

Curvature effects on the large scale structure of the universe

Centre de Physique Théorique (CPT):

Christian Marinoni Basheer Kalbouneh (PhD) Julien Bel

External collaborators:

Louis Perenon Roy Maartens Julien Larena

The example of the cosmic microwave background (CMB):

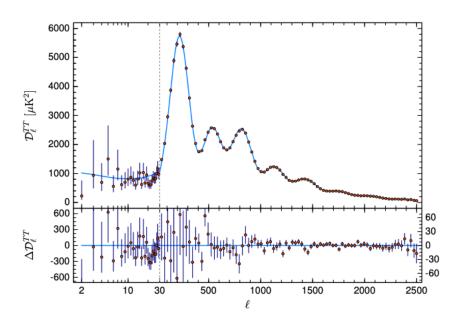
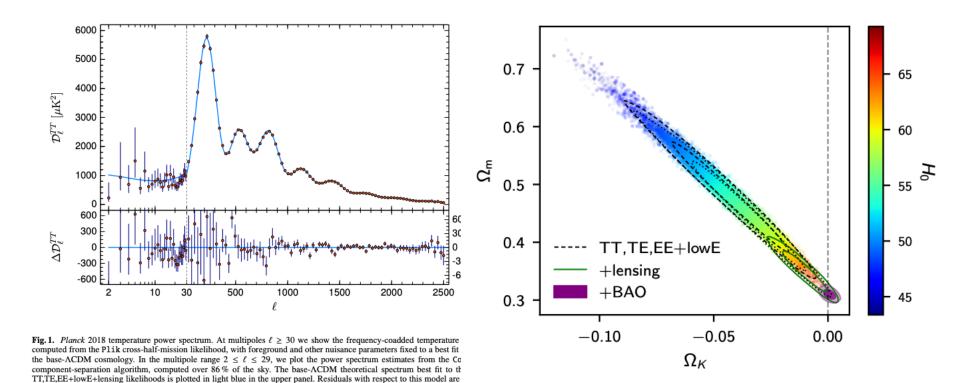



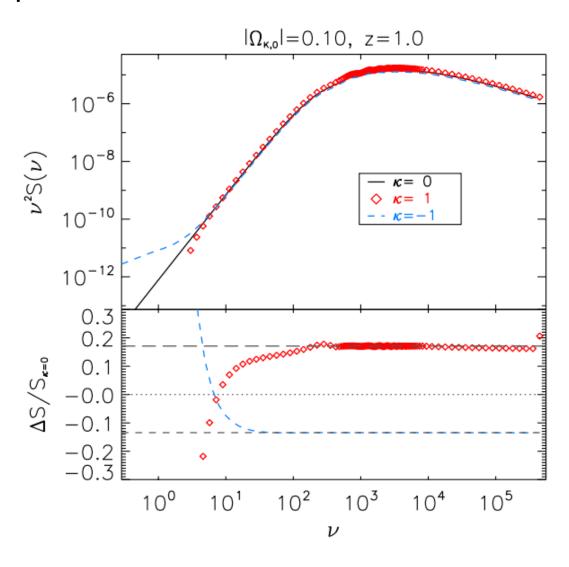
Fig. 1. Planck 2018 temperature power spectrum. At multipoles $\ell \geq 30$ we show the frequency-coadded temperature spectrum computed from the P11k cross-half-mission likelihood, with foreground and other nuisance parameters fixed to a best fit assuming the base- Λ CDM cosmology. In the multipole range $2 \leq \ell \leq 29$, we plot the power spectrum estimates from the Commander component-separation algorithm, computed over 86 % of the sky. The base- Λ CDM theoretical spectrum best fit to the Planck TT,TE,EE+lowE+lensing likelihoods is plotted in light blue in the upper panel. Residuals with respect to this model are shown in the lower panel. The error bars show $\pm 1 \sigma$ diagonal uncertainties, including cosmic variance (approximated as Gaussian) and not including uncertainties in the foreground model at $\ell \geq 30$. Note that the vertical scale changes at $\ell = 30$, where the horizontal axis switches from logarithmic to linear.

The example of the cosmic microwave background (CMB):

Planck (2018)

the lower panel. The error bars show $\pm 1 \sigma$ diagonal uncertainties, including cosmic variance (approximated as Gaussian, including uncertainties in the foreground model at $\ell \geq 30$. Note that the vertical scale changes at $\ell = 30$, where the horizontal axis

switches from logarithmic to linear.

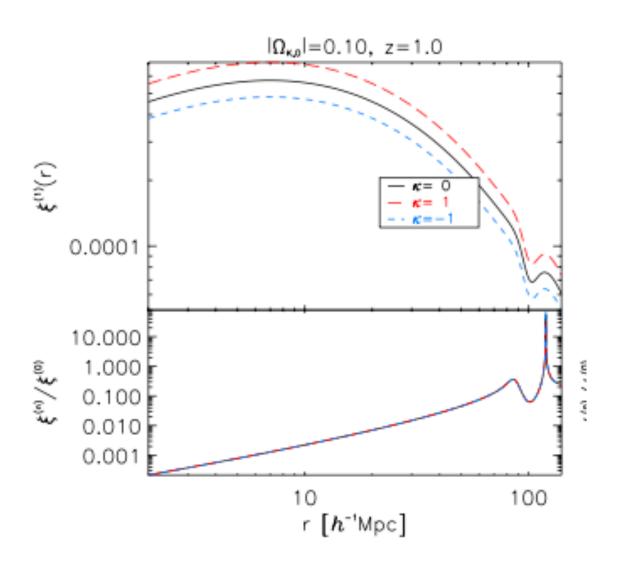

Problem: Fourier basis in curved space

$$\Delta \Psi = -k^2 \Psi$$
,

$$\nu^2 \mathcal{S}(\nu) = \nu \sqrt{\nu^2 - \kappa} \frac{P(k)}{a_0^3}.$$

$$a_0 = \frac{c}{H_0\sqrt{|\Omega_{K,0}|}}$$

Power spectrum:



Modification of the link between 2pcf and power spectrum

$$S_{\kappa}(\chi)^{2} = S_{\kappa}^{2}(\chi_{1})C_{\kappa}^{2}(\chi_{2}) + S_{\kappa}^{2}(\chi_{2})C_{\kappa}^{2}(\chi_{1}) + \kappa S_{\kappa}^{2}(\chi_{1})S_{\kappa}^{2}(\chi_{2})\sin^{2}\gamma - 2S_{\kappa}(\chi_{1})S_{\kappa}(\chi_{2})C_{\kappa}(\chi_{1})C_{\kappa}(\chi_{2})\cos\gamma.$$
(18)

$$\xi(\chi) = b_1 b_2 D_1 D_2 4\pi \int \nu^2 \mathcal{S}(\nu) X_0^{(\kappa)}(\nu, \chi) d\nu,$$

Dipole of the 2pcf in redshift space:

Next

- -Generate Monte Carlo realisations of the matter density field in curved space
- -Quantify the effect of curvature on RSD analysis
- -Quantify the effect of curvature on BAO analysis
- -Constrain curvature with LSS