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• Angular systematics-free two-point statistics in 3D
• R. Paviot et al.  (to be submitted)

• Impact of magnification bias on 3D clustering observable
• M.-A. Breton & de la Torre  (ongoing work)



Angular modes-free redshift-space clustering

• Classical estimator for the two-point correlation function (LS93):

• AMF estimator (Burden 2017):

à Use of auxiliary random catalogue S with exact same angular clustering as data

2 Paviot et al.

pleteness for various reasons. In multi-slit or multi-fibre spectro-
scopic surveys, incompleteness can be induced by missing observa-
tions resulting from the mechanical limitations of the spectrograph.
For instance, the finite size of fibres (or slits) and their finite usable
number at each observation prevent spectroscopic observations of
all possible targets. The latter aspect also depends on the observa-
tional strategy, particularly the number density of targets and redun-
dancy at observing the same patches of the sky. This incompleteness
can be strongly correlated with the intrinsic clustering of targets,
as in the case of fibre collision for instance. Another source of
incompleteness includes varying foreground or background noises
such as stellar density or galactic extinction, which aggravate our
ability to extract redshift measurements from observed spectra, or
lead to very low signal-to-noise spectra where no redshift can be
determined. Inhomogeneity in the survey sampling can also arise
in the preparation of the target sample, when for instance targeted
sources are not selected in the same way in di�erent patches of
the sky due to limited or uneven photometry. Overall, these e�ects
result in systematic biases on clustering measurements, which in
turn, can introduce biases in the inferred values of cosmological or
physical parameters.

In general, observational systematic errors are not necessarily
all known but need to be mitigated in cosmological analysis in order
to achieve high accuracy. Standard practices for this involve applying
weighting schemes based on incompleteness estimates across the
survey footprint, possibly supplemented with additional schemes
accounting for density-dependent e�ects. In Baryon Oscillation
Spectroscopic Survey (BOSS, Dawson et al. 2013) and extended
Baryon Oscillation Spectroscopic Survey (eBOSS, Dawson et al.
2016) for instance, completeness weights are calculated by tesselat-
ing the observed sky and fitting multilinear regression to residual
trends in observational parameters, such as star density or survey
depth (Ross et al. 2012). In addition, projected density-dependent
e�ects such as fibre collision can be dealt with by up-weighting
nearest neighbours to missed galaxy. In this work, we describe an
alternative approach that consists in analysing the galaxy two-point
statistics in configuration space, with nulled angular modes. This
is possible by modifying the standard estimator of the two-point
correlation function. This idea was first introduced by Burden et al.
(2017). They proposed an estimator similar to the standard Landy &
Szalay (1993) estimator, but that includes an additional random cat-
alogue where angular positions are randomly drawn from the galaxy
catalogue. This e�ectively permits removing the angular clustering,
as angular correlations are canceled by the new random catalogue.
The amplitude of this new statistic is suppressed with respect to the
standard two-point correlation function, but is blind to any system-
atic angular selection e�ects. A similar method was also developed
in Fourier space in Pinol et al. (2017). The first application to real
data of such estimator was performed on the eBOSS ELG sample
by Tamone et al. (2020).

In this work, we derive a full model for the modified two-
point correlation function in redshift space, assess its accuracy,
and perform a full analysis of baryonic acoustic oscillations (BAO)
and redshift-space distortions (RSD) on luminous red galaxy and
emission-line galaxy mock samples, as a proof of concept. We will
refer to this modified statistic in the following as the angular modes-
free (AMF) two-point correlation function.

The paper is organized as follows. The Section 2 presents the
formalism of the AMF two-point correlation function. The corre-
sponding theoretical model is presented and tested against mock
samples in Section 3. BAO and RSD analyses are performed using

the standard and AMF correlation functions in Section 4. Section 5
discusses the results and conclude.

2 THE ANGULAR MODES-FREE CORRELATION
FUNCTION

2.1 Definition

The cosmological information in galaxy redshift surveys is com-
monly extracted from the measured two-point statistics of the galaxy
spatial distribution. In configuration space, this is achieved using
the minimum variance Landy & Szalay (1993) estimator:

b (s) = ⇡⇡ (s) � 2⇡'(s) + ''(s)
''(s) (1)

where s is the separation vector between two objects and ⇡⇡, ⇡'
and '' are respectively the normalised number of galaxy-galaxy,
galaxy-random, and random-random pairs. The random catalogue
consists in random points uniformly distributed over the survey
footprint with the same radial distribution as the data. The separation
vector can be decomposed into (B, `) coordinates, where B is the
norm of the separation vector s and ` is the cosine angle between the
separation and line-of-sight directions. This decomposition enables
the expansion of the correlation function in multipole moments,

b✓ (B) =
(2✓ + 1)

2

π 1

�1
b (B, `)!✓ (`)d`, (2)

where !✓ is the Legendre polynomial of order ✓.
In order to suppress the angular clustering, one can modify

this estimator by introducing an auxiliary random catalogue. The
latter has exactly the same angular clustering pattern as the data
but with a random realisation of the radial distribution. It is easily
constructed by randomly assigning galaxy angular positions from
the data catalogue to the random points. We will refer to it as the
shu�ed random catalogue, (, in the following. One can thus design
a modified Landy & Szalay (1993) estimator such that (Burden et al.
2017):

b̃ (s) = ⇡⇡ (s) � 2⇡((s) + (((s)
''(s) . (3)

In this estimator the standard random catalogue in the numerator
is replaced by the shu�ed random catalogue, while is kept in the
denominator. It is clear that by imprinting the angular clustering
of the galaxies in the random catalogue, one suppresses the angu-
lar clustering and associated potential systematic errors, but at the
price of removing part of the cosmological information. As for the
standard correlation function, the AMF correlation function can be
expanded in multipole moments.

The purpose of the random catalogue is the estimation of the
observed volume, and for this it must contain a large number of
points (typically 20-50 times more than in the galaxy catalogue). In
the case of the shu�ed random catalogue, since angular positions
are drawn from observed galaxy positions, some angular positions
will be repeated. This leads to some (( or ⇡( pairs with vanishing
angular separation, or equivalently with ` = 1. Keeping these pairs
in the pair counts can introduce additional noise and bias in the
estimation of the AMF correlation function multipole moments.
In practice however, by adopting a proper binning in ` in the pair
counts, these pairs can be discarded. This e�ect is more problematic
in Fourier space where ` = 1 associated modes cannot be discarded
in the estimator and introduce an additional shot-noise term, as
discussed in de Mattia & Ruhlmann-Kleider (2019).
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2.2 Modelling

In order to model the AMF correlation function, we follow Burden
et al. (2017) and define the AMF overdensity field

X̃(r) ⌘ =(r) � =̃(r)
=̄(r) (4)

where =(r), =̃(r) and =̄(r) correspond respectively to the number
density of galaxies, shu�ed random points, and standard random
points at comoving position r. By construction, the shu�ed random
number density is

=̃(r) =
Ø
=(j0, W)dj0

Ø
=̄(j, W0)dW0Ø Ø

=̄(j0, W0)dj0dW0
= =̄(r)

Ø
=(j0, W)dj0Ø
=̄(j0, W0)dj0

, (5)

where W corresponds to the two-dimensional angular coordinates
and j to the radial coordinate and assumed that the random cata-
logue is uniform across the sky in W. We can thus express the AMF
overdensity field as

X̃(r) = X(r) �
Ø
X(j, W)=̄(j)djØ

=̄(j)dj
. (6)

In the following, in order to simplify the notation, =̄ is normalized so
that

Ø
=̄(j)3j = 1. In Eq. 6, the second term on the right-hand side

corresponds in fact to the projected overdensity at angular position
W on the sky,

X̂(W) =
π

X(j, W)=̄(j)dj. (7)

The AMF correlation function corresponds to the auto-correlation
of the AMF overdensity field,

b̃ (s) ⌘ hX̃(r)X̃(r0)i = hX(r)X(r0)i�2
⌦
X(r)X̂(W0)

↵
+
⌦
X̂(W)X̂(W0)

↵
,
(8)

where we have defined s = r0 � r and h.i denotes the ensemble
average. In the latter equation, the first and third terms correspond
respectively to the three-dimensional and angular correlation func-
tions, while the second term is the cross-correlation between the
three-dimensional overdensity and projected angular overdensity
fields.

The angular correlation term is defined as

F(\) ⌘
⌧π

X(j, W)=̄(j)dj
π

X(j0, W0)=̄(j0)dj0
�

(9)

and is related to the three-dimensional correlation function b as
(Peebles 1980),

F(\) =
π 1

0
dj

π 1

0
dj0b (\,�j)=̄(j)=̄(j0), (10)

where \ = |W0 � W | is the angular separation and �j = j0 � j is the
radial separation. Further defining j̄ = (j+ j0)/2 and changing the
variable of integration in the integrals leads to (Simon 2007)

F(\) =
π 1

0
dj̄

π 2j̄

�2j̄
d�j b (\,�j)=̄

✓
j̄ � �j

2

◆
=̄

✓
j̄ + �j

2

◆
.

(11)

If we assume that =̄ weakly varies over the typical �j/2 scale in
b (\,�j) so that =̄ ( j̄ � �j/2) ' =̄ ( j̄ + �j/2) ' =̄(j) in the inner
integral, Eq. 11 simplifies to the well-known Limber approximation
(Limber 1953):

F(\) '
π 1

0
dj̄ =̄2 (j)

π 1

�1
d�j b (\,�j). (12)

The cross-correlation term can be written as (Burden et al.
2017)⌧
X(j, W)

π
X(j0, W0)=̄(j0)3j0

�
'
π 1

0
dj0 =̄(j0) b (\,�j), (13)

and by adopting the same changes of variable as previously, the
right-hand side of Eq. 13 becomesπ 1

�1
d�j =̄

✓
j̄ + �j

2

◆
b (\,�j). (14)

In this equation, j̄ is an undefined constant, which is related at first
order to the mean radial distance of the sample. The right-hand side
of Eq. 13 used to obtain this result should in reality be averaged over
the observed volume, introducing a further integral over d3j. In fact,
this approximation can be avoided by making explicit the volume
integral over the survey window function as shown in Section 2.3.
We note that if we use Limber-type approximation in Eq. 14, the
mean number density goes out of the integral and the expression
reduces to a constant times the projected correlation function.

In practice, we are seeking an expression for the anisotropic
three-dimensional correlation function that can be used to model
observed multipole moments. In the plane-parallel approximation,
the separation vector s can be decomposed in terms of the transverse
and radial comoving separations, B? and B k respectively, using for
instance the mid-point line-of-sight definition (Fisher et al. 1994).
We can thus use the previous model defined for b (\,�j) and make
the substitutions: �j ! B k and \ ! B?. This holds when the radial
distance is large with respect to the pair separation and e�ectively
assumes a flat sky. In this case, we obtain that

b̃ (B?, B k) = b (B?, B k) � 2⇠ (B?) + �(B?) (15)

where

⇠ (B?) =
π 1

�1
dB k =̄

✓
j̄ +

B k
2

◆
b (B?, B k), (16)

�(B?) =
π 1

0
dj̄

π 1

�1
dB kb (B?, B k) =̄

✓
j̄ �

B k
2

◆
=̄

✓
j̄ +

B k
2

◆
, (17)

or with Limber approximation,

⇠L (B?) = =̄( j̄)
π 1

�1
dB k b (B?, B k), (18)

�L (B?) =
π 1

0
dj̄=̄2 ( j̄)

π 1

�1
dB kb (B?, B k). (19)

By substituting � and ⇠ by �L and ⇠L in Eq. 15 one defines the
simplest model, where both Limber and flat-sky approximations
are used. In the eBOSS ELG analysis of Tamone et al. (2020), ⇠
and �L are used as the cross-correlation and angular terms, respec-
tively. In those approximate models, j̄ is a free parameter that can
be determined empirically from simulations for the specific galaxy
sample under consideration. Eventually, the AMF correlation func-
tion multipole moments can be obtained by remapping b̃ (B?, B k)
into b̃ (B, `) using that B? = B

p
1 � `2 and B k = B`, and integrating

b̃ (B, `) over ` as in Eq. 2.

2.3 Full model

In fact, the flat-sky approximation and that made in Eq. 13 can be
avoided. Precisely, the AMF estimator in Eq. 3 corresponds to the
auto-correlation of the AMF overdensity times the survey window
function, divided by the survey window correlation function. The
window function %(r) is the probability of seeing an object at any
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corresponds in fact to the projected overdensity at angular position
W on the sky,

X̂(W) =
π

X(j, W)=̄(j)dj. (7)

The AMF correlation function corresponds to the auto-correlation
of the AMF overdensity field,

b̃ (s) ⌘ hX̃(r)X̃(r0)i = hX(r)X(r0)i�2
⌦
X(r)X̂(W0)

↵
+
⌦
X̂(W)X̂(W0)

↵
,
(8)

where we have defined s = r0 � r and h.i denotes the ensemble
average. In the latter equation, the first and third terms correspond
respectively to the three-dimensional and angular correlation func-
tions, while the second term is the cross-correlation between the
three-dimensional overdensity and projected angular overdensity
fields.

The angular correlation term is defined as

F(\) ⌘
⌧π

X(j, W)=̄(j)dj
π

X(j0, W0)=̄(j0)dj0
�

(9)

and is related to the three-dimensional correlation function b as
(Peebles 1980),

F(\) =
π 1

0
dj

π 1

0
dj0b (\,�j)=̄(j)=̄(j0), (10)

where \ = |W0 � W | is the angular separation and �j = j0 � j is the
radial separation. Further defining j̄ = (j+ j0)/2 and changing the
variable of integration in the integrals leads to (Simon 2007)

F(\) =
π 1

0
dj̄

π 2j̄

�2j̄
d�j b (\,�j)=̄

✓
j̄ � �j

2

◆
=̄

✓
j̄ + �j

2

◆
.

(11)

If we assume that =̄ weakly varies over the typical �j/2 scale in
b (\,�j) so that =̄ ( j̄ � �j/2) ' =̄ ( j̄ + �j/2) ' =̄(j) in the inner
integral, Eq. 11 simplifies to the well-known Limber approximation
(Limber 1953):

F(\) '
π 1

0
dj̄ =̄2 (j)

π 1

�1
d�j b (\,�j). (12)

The cross-correlation term can be written as (Burden et al.
2017)⌧
X(j, W)

π
X(j0, W0)=̄(j0)3j0

�
'
π 1

0
dj0 =̄(j0) b (\,�j), (13)

and by adopting the same changes of variable as previously, the
right-hand side of Eq. 13 becomesπ 1

�1
d�j =̄

✓
j̄ + �j

2

◆
b (\,�j). (14)

In this equation, j̄ is an undefined constant, which is related at first
order to the mean radial distance of the sample. The right-hand side
of Eq. 13 used to obtain this result should in reality be averaged over
the observed volume, introducing a further integral over d3j. In fact,
this approximation can be avoided by making explicit the volume
integral over the survey window function as shown in Section 2.3.
We note that if we use Limber-type approximation in Eq. 14, the
mean number density goes out of the integral and the expression
reduces to a constant times the projected correlation function.

In practice, we are seeking an expression for the anisotropic
three-dimensional correlation function that can be used to model
observed multipole moments. In the plane-parallel approximation,
the separation vector s can be decomposed in terms of the transverse
and radial comoving separations, B? and B k respectively, using for
instance the mid-point line-of-sight definition (Fisher et al. 1994).
We can thus use the previous model defined for b (\,�j) and make
the substitutions: �j ! B k and \ ! B?. This holds when the radial
distance is large with respect to the pair separation and e�ectively
assumes a flat sky. In this case, we obtain that

b̃ (B?, B k) = b (B?, B k) � 2⇠ (B?) + �(B?) (15)

where

⇠ (B?) =
π 1

�1
dB k =̄

✓
j̄ +

B k
2

◆
b (B?, B k), (16)

�(B?) =
π 1

0
dj̄

π 1

�1
dB kb (B?, B k) =̄

✓
j̄ �

B k
2

◆
=̄

✓
j̄ +

B k
2

◆
, (17)

or with Limber approximation,

⇠L (B?) = =̄( j̄)
π 1

�1
dB k b (B?, B k), (18)

�L (B?) =
π 1

0
dj̄=̄2 ( j̄)

π 1

�1
dB kb (B?, B k). (19)

By substituting � and ⇠ by �L and ⇠L in Eq. 15 one defines the
simplest model, where both Limber and flat-sky approximations
are used. In the eBOSS ELG analysis of Tamone et al. (2020), ⇠
and �L are used as the cross-correlation and angular terms, respec-
tively. In those approximate models, j̄ is a free parameter that can
be determined empirically from simulations for the specific galaxy
sample under consideration. Eventually, the AMF correlation func-
tion multipole moments can be obtained by remapping b̃ (B?, B k)
into b̃ (B, `) using that B? = B

p
1 � `2 and B k = B`, and integrating

b̃ (B, `) over ` as in Eq. 2.

2.3 Full model

In fact, the flat-sky approximation and that made in Eq. 13 can be
avoided. Precisely, the AMF estimator in Eq. 3 corresponds to the
auto-correlation of the AMF overdensity times the survey window
function, divided by the survey window correlation function. The
window function %(r) is the probability of seeing an object at any
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position r in the survey. If we define the windowed AMF overdensity
field � (r) as

� (r) = %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0), (20)

where r and r0 are collinear, the AMF correlation function is

b̃ (s) ⌘
Ø

d3A � (r)� (r + s)Ø
d3A %(r)%(r + s)

. (21)

We find that the expected value of the latter estimator is

b̃ (s) = b (s) � ⇠ (s)
, (s) +

�(s)
, (s) , (22)

where b (s) is the standard anisotropic correlation function and

⇠ (s) =
π

d3A %(r)%(r + s)
π

dA 0=̄(A 0)b (r0 � r) (23)

+
π

dA 00=̄(A 00)b
�
r00 � r � s

� �
,

�(s) =
π

d3A %(r)%(r + s)
π

dA 00=̄(A 00)
π

dA 0=̄(A 0)b (r0 � r00),
(24)

, (s) =
π

d3A %(r)%(r + s). (25)

The geometrical configuration and details of the derivation are
given in Appendix A, we only summarise here the main results.
The integrals in the expressions for �(s) and ⇠ (s) can be simplified
and rearranged, and in the end we find that the AMF correlation
function can be written as

b̃ (B, `) = b (B, `) � ⇠ (B, `)
, (B, `) +

�(B, `)
, (B, `) (26)

where

⇠ (B, `) =
1’
✓=0

©≠
´
π 1

0
d�

1’
?=0

� b? (�)W⇠✓? (B,�)
™Æ
¨
!✓ (`) (27)

�(B, `) =
1’
✓=0

©≠
´
π 1

0
d�

1’
?=0

� b? (�)W�✓? (B,�)
™Æ
¨
!✓ (`) (28)

, (B, `) =
1’
✓=0

W✓ (B)!✓ (`). (29)

We refer to Appendix A for the full derivation and the expression for
the kernels W⇠✓? , W�✓? , and W✓ . It is important to emphasize
that these kernels only depend on the geometry of the survey and
can be computed in advance. Eventually, the multipole moments of
the AMF correlation function are obtained from b̃ (B, `) as

b̃✓ (B) =
(2✓ + 1)

2

π 1

�1
b̃ (B, `)!✓ (`)d`. (30)

Contrary to the approximate models presented in the previous sec-
tion, the full model does not include any approximation except the
plane-parallel one, and has no additional free parameter.

2.4 Sensitivity to angular systematics

It is interesting to see formally that the AMF overdensity removes
any additive angular contamination. Indeed, if we write the con-
taminated overdensity X(r) + 2(r), where 2 is a contamination field

Table 1. Cosmological parameters of the EZ����� (EZ) and the
N������(NS) simulation. For both simulation ⌦a = 0. The e�ective redshift
of the EZ����� and N������ are Ie� = 0.86 and Ie� = 0.55 respectively.

EZ NS

⌦< 0.307 0.286
⌦1 0.048 0.047
⌘ 0.678 0.700
=B 0.961 0.960

f8 (I = 0) 0.823 0.820
Adrag [Mpc] 147.66 147.15

5 f8 (I = Ie�) 0.469 0.449

Figure 1. Galaxy number density in CMASS (red curve) and ELG (blue
curve) mock samples.

that only depends on the line-of-sight direction, we have for the
windowed AMF overdensity,

� (r) = %(r) (X(r) + 2(r)) � %(r)
π

dA 0=̄(A 0)
�
X(r0) + 2(r0)

�
(31)

= %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0). (32)

To obtain the latter equation we have used that, by definition of
2 and the fact that r and r0 share the same line of sight, 2(r0) =
2(r). Nonetheless, if the contamination field modulates the observed
number of galaxies, as for instance in the case varying survey depth
or galactic extinction (e.g. Shafer & Huterer 2015), 2(r) cannot be
erased and will factorize � (r).

3 TEST ON MOCK SAMPLES

3.1 Description of the mock samples

In order to test the AMF correlation function model presented in the
previous section, we make use of NSeries mocks (Alam et al. 2017)
and eBOSS EZmocks (Zhao et al. 2020). These mocks are designed
to reproduce di�erent galaxy samples of the BOSS and eBOSS
surveys. We concentrate in this analysis on the BOSS constant mass
galaxy (CMASS) and eBOSS emission-line galaxy (ELG) samples,
which cover the redshift intervals 0.43 < I < 0.7 and 0.7 < I < 1.1
respectively.
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position r in the survey. If we define the windowed AMF overdensity
field � (r) as

� (r) = %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0), (20)

where r and r0 are collinear, the AMF correlation function is

b̃ (s) ⌘
Ø

d3A � (r)� (r + s)Ø
d3A %(r)%(r + s)

. (21)

We find that the expected value of the latter estimator is

b̃ (s) = b (s) � ⇠ (s)
, (s) +

�(s)
, (s) , (22)

where b (s) is the standard anisotropic correlation function and

⇠ (s) =
π

d3A %(r)%(r + s)
π

dA 0=̄(A 0)b (r0 � r) (23)

+
π

dA 00=̄(A 00)b
�
r00 � r � s

� �
,

�(s) =
π

d3A %(r)%(r + s)
π

dA 00=̄(A 00)
π

dA 0=̄(A 0)b (r0 � r00),
(24)

, (s) =
π

d3A %(r)%(r + s). (25)

The geometrical configuration and details of the derivation are
given in Appendix A, we only summarise here the main results.
The integrals in the expressions for �(s) and ⇠ (s) can be simplified
and rearranged, and in the end we find that the AMF correlation
function can be written as

b̃ (B, `) = b (B, `) � ⇠ (B, `)
, (B, `) +

�(B, `)
, (B, `) (26)

where

⇠ (B, `) =
1’
✓=0

©≠
´
π 1

0
d�

1’
?=0

� b? (�)W⇠✓? (B,�)
™Æ
¨
!✓ (`) (27)

�(B, `) =
1’
✓=0

©≠
´
π 1

0
d�

1’
?=0

� b? (�)W�✓? (B,�)
™Æ
¨
!✓ (`) (28)

, (B, `) =
1’
✓=0

W✓ (B)!✓ (`). (29)

We refer to Appendix A for the full derivation and the expression for
the kernels W⇠✓? , W�✓? , and W✓ . It is important to emphasize
that these kernels only depend on the geometry of the survey and
can be computed in advance. Eventually, the multipole moments of
the AMF correlation function are obtained from b̃ (B, `) as

b̃✓ (B) =
(2✓ + 1)

2

π 1

�1
b̃ (B, `)!✓ (`)d`. (30)

Contrary to the approximate models presented in the previous sec-
tion, the full model does not include any approximation except the
plane-parallel one, and has no additional free parameter.

2.4 Sensitivity to angular systematics

It is interesting to see formally that the AMF overdensity removes
any additive angular contamination. Indeed, if we write the con-
taminated overdensity X(r) + 2(r), where 2 is a contamination field

Table 1. Cosmological parameters of the EZ����� (EZ) and the
N������(NS) simulation. For both simulation ⌦a = 0. The e�ective redshift
of the EZ����� and N������ are Ie� = 0.86 and Ie� = 0.55 respectively.

EZ NS

⌦< 0.307 0.286
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⌘ 0.678 0.700
=B 0.961 0.960

f8 (I = 0) 0.823 0.820
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Figure 1. Galaxy number density in CMASS (red curve) and ELG (blue
curve) mock samples.

that only depends on the line-of-sight direction, we have for the
windowed AMF overdensity,

� (r) = %(r) (X(r) + 2(r)) � %(r)
π

dA 0=̄(A 0)
�
X(r0) + 2(r0)

�
(31)

= %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0). (32)

To obtain the latter equation we have used that, by definition of
2 and the fact that r and r0 share the same line of sight, 2(r0) =
2(r). Nonetheless, if the contamination field modulates the observed
number of galaxies, as for instance in the case varying survey depth
or galactic extinction (e.g. Shafer & Huterer 2015), 2(r) cannot be
erased and will factorize � (r).

3 TEST ON MOCK SAMPLES

3.1 Description of the mock samples

In order to test the AMF correlation function model presented in the
previous section, we make use of NSeries mocks (Alam et al. 2017)
and eBOSS EZmocks (Zhao et al. 2020). These mocks are designed
to reproduce di�erent galaxy samples of the BOSS and eBOSS
surveys. We concentrate in this analysis on the BOSS constant mass
galaxy (CMASS) and eBOSS emission-line galaxy (ELG) samples,
which cover the redshift intervals 0.43 < I < 0.7 and 0.7 < I < 1.1
respectively.
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position r in the survey. If we define the windowed AMF overdensity
field � (r) as

� (r) = %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0), (20)

where r and r0 are collinear, the AMF correlation function is

b̃ (s) ⌘
Ø

d3A � (r)� (r + s)Ø
d3A %(r)%(r + s)

. (21)

We find that the expected value of the latter estimator is

b̃ (s) = b (s) � ⇠ (s)
, (s) +

�(s)
, (s) , (22)

where b (s) is the standard anisotropic correlation function and

⇠ (s) =
π

d3A %(r)%(r + s)
π

dA 0=̄(A 0)b (r0 � r) (23)

+
π

dA 00=̄(A 00)b
�
r00 � r � s

� �
,

�(s) =
π

d3A %(r)%(r + s)
π

dA 00=̄(A 00)
π

dA 0=̄(A 0)b (r0 � r00),
(24)

, (s) =
π

d3A %(r)%(r + s). (25)

The geometrical configuration and details of the derivation are
given in Appendix A, we only summarise here the main results.
The integrals in the expressions for �(s) and ⇠ (s) can be simplified
and rearranged, and in the end we find that the AMF correlation
function can be written as

b̃ (B, `) = b (B, `) � ⇠ (B, `)
, (B, `) +

�(B, `)
, (B, `) (26)

where

⇠ (B, `) =
1’
✓=0

©≠
´
π 1

0
d�

1’
?=0

� b? (�)W⇠✓? (B,�)
™Æ
¨
!✓ (`) (27)

�(B, `) =
1’
✓=0

©≠
´
π 1

0
d�

1’
?=0

� b? (�)W�✓? (B,�)
™Æ
¨
!✓ (`) (28)

, (B, `) =
1’
✓=0

W✓ (B)!✓ (`). (29)

We refer to Appendix A for the full derivation and the expression for
the kernels W⇠✓? , W�✓? , and W✓ . It is important to emphasize
that these kernels only depend on the geometry of the survey and
can be computed in advance. Eventually, the multipole moments of
the AMF correlation function are obtained from b̃ (B, `) as

b̃✓ (B) =
(2✓ + 1)

2

π 1

�1
b̃ (B, `)!✓ (`)d`. (30)

Contrary to the approximate models presented in the previous sec-
tion, the full model does not include any approximation except the
plane-parallel one, and has no additional free parameter.

2.4 Sensitivity to angular systematics

It is interesting to see formally that the AMF overdensity removes
any additive angular contamination. Indeed, if we write the con-
taminated overdensity X(r) + 2(r), where 2 is a contamination field

Table 1. Cosmological parameters of the EZ����� (EZ) and the
N������(NS) simulation. For both simulation ⌦a = 0. The e�ective redshift
of the EZ����� and N������ are Ie� = 0.86 and Ie� = 0.55 respectively.
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Figure 1. Galaxy number density in CMASS (red curve) and ELG (blue
curve) mock samples.

that only depends on the line-of-sight direction, we have for the
windowed AMF overdensity,

� (r) = %(r) (X(r) + 2(r)) � %(r)
π

dA 0=̄(A 0)
�
X(r0) + 2(r0)

�
(31)

= %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0). (32)

To obtain the latter equation we have used that, by definition of
2 and the fact that r and r0 share the same line of sight, 2(r0) =
2(r). Nonetheless, if the contamination field modulates the observed
number of galaxies, as for instance in the case varying survey depth
or galactic extinction (e.g. Shafer & Huterer 2015), 2(r) cannot be
erased and will factorize � (r).

3 TEST ON MOCK SAMPLES

3.1 Description of the mock samples

In order to test the AMF correlation function model presented in the
previous section, we make use of NSeries mocks (Alam et al. 2017)
and eBOSS EZmocks (Zhao et al. 2020). These mocks are designed
to reproduce di�erent galaxy samples of the BOSS and eBOSS
surveys. We concentrate in this analysis on the BOSS constant mass
galaxy (CMASS) and eBOSS emission-line galaxy (ELG) samples,
which cover the redshift intervals 0.43 < I < 0.7 and 0.7 < I < 1.1
respectively.
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position r in the survey. If we define the windowed AMF overdensity
field � (r) as

� (r) = %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0), (20)

where r and r0 are collinear, the AMF correlation function is

b̃ (s) ⌘
Ø

d3A � (r)� (r + s)Ø
d3A %(r)%(r + s)

. (21)

We find that the expected value of the latter estimator is

b̃ (s) = b (s) � ⇠ (s)
, (s) +

�(s)
, (s) , (22)

where b (s) is the standard anisotropic correlation function and

⇠ (s) =
π

d3A %(r)%(r + s)
π

dA 0=̄(A 0)b (r0 � r) (23)

+
π

dA 00=̄(A 00)b
�
r00 � r � s

� �
,

�(s) =
π

d3A %(r)%(r + s)
π

dA 00=̄(A 00)
π

dA 0=̄(A 0)b (r0 � r00),
(24)

, (s) =
π

d3A %(r)%(r + s). (25)

The geometrical configuration and details of the derivation are
given in Appendix A, we only summarise here the main results.
The integrals in the expressions for �(s) and ⇠ (s) can be simplified
and rearranged, and in the end we find that the AMF correlation
function can be written as

b̃ (B, `) = b (B, `) � ⇠ (B, `)
, (B, `) +

�(B, `)
, (B, `) (26)

where
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1’
?=0

� b? (�)W⇠✓? (B,�)
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!✓ (`) (27)

�(B, `) =
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™Æ
¨
!✓ (`) (28)

, (B, `) =
1’
✓=0

W✓ (B)!✓ (`). (29)

We refer to Appendix A for the full derivation and the expression for
the kernels W⇠✓? , W�✓? , and W✓ . It is important to emphasize
that these kernels only depend on the geometry of the survey and
can be computed in advance. Eventually, the multipole moments of
the AMF correlation function are obtained from b̃ (B, `) as

b̃✓ (B) =
(2✓ + 1)

2

π 1

�1
b̃ (B, `)!✓ (`)d`. (30)

Contrary to the approximate models presented in the previous sec-
tion, the full model does not include any approximation except the
plane-parallel one, and has no additional free parameter.

2.4 Sensitivity to angular systematics

It is interesting to see formally that the AMF overdensity removes
any additive angular contamination. Indeed, if we write the con-
taminated overdensity X(r) + 2(r), where 2 is a contamination field

Table 1. Cosmological parameters of the EZ����� (EZ) and the
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Figure 1. Galaxy number density in CMASS (red curve) and ELG (blue
curve) mock samples.

that only depends on the line-of-sight direction, we have for the
windowed AMF overdensity,

� (r) = %(r) (X(r) + 2(r)) � %(r)
π

dA 0=̄(A 0)
�
X(r0) + 2(r0)

�
(31)

= %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0). (32)

To obtain the latter equation we have used that, by definition of
2 and the fact that r and r0 share the same line of sight, 2(r0) =
2(r). Nonetheless, if the contamination field modulates the observed
number of galaxies, as for instance in the case varying survey depth
or galactic extinction (e.g. Shafer & Huterer 2015), 2(r) cannot be
erased and will factorize � (r).

3 TEST ON MOCK SAMPLES

3.1 Description of the mock samples

In order to test the AMF correlation function model presented in the
previous section, we make use of NSeries mocks (Alam et al. 2017)
and eBOSS EZmocks (Zhao et al. 2020). These mocks are designed
to reproduce di�erent galaxy samples of the BOSS and eBOSS
surveys. We concentrate in this analysis on the BOSS constant mass
galaxy (CMASS) and eBOSS emission-line galaxy (ELG) samples,
which cover the redshift intervals 0.43 < I < 0.7 and 0.7 < I < 1.1
respectively.
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APPENDIX A: DERIVATION OF THE AMF TWO-POINT CORRELATION FUNCTION

The modified Landy-Szalay estimator in Eq. 3 is sensitive to the auto-correlation of the AMF overdensity times the survey window function,
divided by the window correlation function. If we define the windowed AMF overdensity field as

� (r) = %(r)X(r) � %(r)
π

dA 00=̄(A 00)X(r00), (A1)

where r and r00 share the same line of sight, the AMF correlation function is

b̃ (s) ⌘
Ø

d3A � (r)� (r + s)Ø
d3A %(r)%(r + s)

. (A2)

From the definition of � (r), we have that

� (r)� (r + s) = %(r)%(r + s)X(r)X(r + s)

� %(r)X(r)%(r + s)
π

dA 0=̄(A 0)X(r0)

� %(r + s)X(r + s)%(r)
π

dA 00=̄(A 00)X(r00)

+ %(r)%(r + s)
π

dA 00=̄(A 00)X(r00)
π

dA 0=̄(A 0)X(r0),

(A3)

where r0 and r + s are colinear (as well as r and r00). By taking the volume integral of Eq. A3 we can identify four terms. The first one
corresponds to the windowed correlation function, the second and third are associated to the cross term in the following, and the fourth term to
the angular term. The denominator of Eq. A2 is the window correlation function. Putting all terms together we find that the AMF correlation
function can be written

b̃ (s) = b (s) � ⇠ (s)
, (s) +

�(s)
, (s) , (A4)

where

b (s) = hX(r)X(r + s)i (A5)

⇠ (s) =
π

d3A %(r)%(r + s)
π

dA 0=̄(A 0)b (r0 � r) +
π

dA 00=̄(A 00)b
�
r00 � r � s

� �
, (A6)

�(s) =
π

d3A %(r)%(r + s)
π

dA 00=̄(A 00)
π

dA 0=̄(A 0)b (r0 � r00), (A7)

, (s) =
π

d3A %(r)%(r + s). (A8)
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position r in the survey. If we define the windowed AMF overdensity
field � (r) as

� (r) = %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0), (20)

where r and r0 are collinear, the AMF correlation function is

b̃ (s) ⌘
Ø

d3A � (r)� (r + s)Ø
d3A %(r)%(r + s)

. (21)

We find that the expected value of the latter estimator is

b̃ (s) = b (s) � ⇠ (s)
, (s) +

�(s)
, (s) , (22)

where b (s) is the standard anisotropic correlation function and

⇠ (s) =
π

d3A %(r)%(r + s)
π

dA 0=̄(A 0)b (r0 � r) (23)

+
π

dA 00=̄(A 00)b
�
r00 � r � s

� �
,

�(s) =
π

d3A %(r)%(r + s)
π

dA 00=̄(A 00)
π

dA 0=̄(A 0)b (r0 � r00),
(24)

, (s) =
π

d3A %(r)%(r + s). (25)

The geometrical configuration and details of the derivation are
given in Appendix A, we only summarise here the main results.
The integrals in the expressions for �(s) and ⇠ (s) can be simplified
and rearranged, and in the end we find that the AMF correlation
function can be written as

b̃ (B, `) = b (B, `) � ⇠ (B, `)
, (B, `) +

�(B, `)
, (B, `) (26)

where

⇠ (B, `) =
1’
✓=0

©≠
´
π 1

0
d�

1’
?=0

� b? (�)W⇠✓? (B,�)
™Æ
¨
!✓ (`) (27)

�(B, `) =
1’
✓=0

©≠
´
π 1

0
d�

1’
?=0

� b? (�)W�✓? (B,�)
™Æ
¨
!✓ (`) (28)

, (B, `) =
1’
✓=0

W✓ (B)!✓ (`). (29)

We refer to Appendix A for the full derivation and the expression for
the kernels W⇠✓? , W�✓? , and W✓ . It is important to emphasize
that these kernels only depend on the geometry of the survey and
can be computed in advance. Eventually, the multipole moments of
the AMF correlation function are obtained from b̃ (B, `) as

b̃✓ (B) =
(2✓ + 1)

2

π 1

�1
b̃ (B, `)!✓ (`)d`. (30)

Contrary to the approximate models presented in the previous sec-
tion, the full model does not include any approximation except the
plane-parallel one, and has no additional free parameter.

2.4 Sensitivity to angular systematics

It is interesting to see formally that the AMF overdensity removes
any additive angular contamination. Indeed, if we write the con-
taminated overdensity X(r) + 2(r), where 2 is a contamination field

Table 1. Cosmological parameters of the EZ����� (EZ) and the
N������(NS) simulation. For both simulation ⌦a = 0. The e�ective redshift
of the EZ����� and N������ are Ie� = 0.86 and Ie� = 0.55 respectively.

EZ NS

⌦< 0.307 0.286
⌦1 0.048 0.047
⌘ 0.678 0.700
=B 0.961 0.960

f8 (I = 0) 0.823 0.820
Adrag [Mpc] 147.66 147.15

5 f8 (I = Ie�) 0.469 0.449

Figure 1. Galaxy number density in CMASS (red curve) and ELG (blue
curve) mock samples.

that only depends on the line-of-sight direction, we have for the
windowed AMF overdensity,

� (r) = %(r) (X(r) + 2(r)) � %(r)
π

dA 0=̄(A 0)
�
X(r0) + 2(r0)

�
(31)

= %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0). (32)

To obtain the latter equation we have used that, by definition of
2 and the fact that r and r0 share the same line of sight, 2(r0) =
2(r). Nonetheless, if the contamination field modulates the observed
number of galaxies, as for instance in the case varying survey depth
or galactic extinction (e.g. Shafer & Huterer 2015), 2(r) cannot be
erased and will factorize � (r).

3 TEST ON MOCK SAMPLES

3.1 Description of the mock samples

In order to test the AMF correlation function model presented in the
previous section, we make use of NSeries mocks (Alam et al. 2017)
and eBOSS EZmocks (Zhao et al. 2020). These mocks are designed
to reproduce di�erent galaxy samples of the BOSS and eBOSS
surveys. We concentrate in this analysis on the BOSS constant mass
galaxy (CMASS) and eBOSS emission-line galaxy (ELG) samples,
which cover the redshift intervals 0.43 < I < 0.7 and 0.7 < I < 1.1
respectively.
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APPENDIX A: DERIVATION OF THE AMF TWO-POINT CORRELATION FUNCTION

The modified Landy-Szalay estimator in Eq. 3 is sensitive to the auto-correlation of the AMF overdensity times the survey window function,
divided by the window correlation function. If we define the windowed AMF overdensity field as

� (r) = %(r)X(r) � %(r)
π

dA 00=̄(A 00)X(r00), (A1)

where r and r00 share the same line of sight, the AMF correlation function is

b̃ (s) ⌘
Ø

d3A � (r)� (r + s)Ø
d3A %(r)%(r + s)

. (A2)

From the definition of � (r), we have that

� (r)� (r + s) = %(r)%(r + s)X(r)X(r + s)

� %(r)X(r)%(r + s)
π

dA 0=̄(A 0)X(r0)

� %(r + s)X(r + s)%(r)
π

dA 00=̄(A 00)X(r00)

+ %(r)%(r + s)
π

dA 00=̄(A 00)X(r00)
π

dA 0=̄(A 0)X(r0),

(A3)

where r0 and r + s are colinear (as well as r and r00). By taking the volume integral of Eq. A3 we can identify four terms. The first one
corresponds to the windowed correlation function, the second and third are associated to the cross term in the following, and the fourth term to
the angular term. The denominator of Eq. A2 is the window correlation function. Putting all terms together we find that the AMF correlation
function can be written

b̃ (s) = b (s) � ⇠ (s)
, (s) +

�(s)
, (s) , (A4)

where

b (s) = hX(r)X(r + s)i (A5)

⇠ (s) =
π

d3A %(r)%(r + s)
π

dA 0=̄(A 0)b (r0 � r) +
π

dA 00=̄(A 00)b
�
r00 � r � s

� �
, (A6)

�(s) =
π

d3A %(r)%(r + s)
π

dA 00=̄(A 00)
π

dA 0=̄(A 0)b (r0 � r00), (A7)

, (s) =
π

d3A %(r)%(r + s). (A8)
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position r in the survey. If we define the windowed AMF overdensity
field � (r) as

� (r) = %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0), (20)

where r and r0 are collinear, the AMF correlation function is

b̃ (s) ⌘
Ø

d3A � (r)� (r + s)Ø
d3A %(r)%(r + s)

. (21)

We find that the expected value of the latter estimator is

b̃ (s) = b (s) � ⇠ (s)
, (s) +

�(s)
, (s) , (22)

where b (s) is the standard anisotropic correlation function and

⇠ (s) =
π

d3A %(r)%(r + s)
π

dA 0=̄(A 0)b (r0 � r) (23)

+
π

dA 00=̄(A 00)b
�
r00 � r � s

� �
,

�(s) =
π

d3A %(r)%(r + s)
π

dA 00=̄(A 00)
π

dA 0=̄(A 0)b (r0 � r00),
(24)

, (s) =
π

d3A %(r)%(r + s). (25)

The geometrical configuration and details of the derivation are
given in Appendix A, we only summarise here the main results.
The integrals in the expressions for �(s) and ⇠ (s) can be simplified
and rearranged, and in the end we find that the AMF correlation
function can be written as

b̃ (B, `) = b (B, `) � ⇠ (B, `)
, (B, `) +

�(B, `)
, (B, `) (26)

where

⇠ (B, `) =
1’
✓=0

©≠
´
π 1

0
d�

1’
?=0

� b? (�)W⇠✓? (B,�)
™Æ
¨
!✓ (`) (27)

�(B, `) =
1’
✓=0

©≠
´
π 1

0
d�

1’
?=0

� b? (�)W�✓? (B,�)
™Æ
¨
!✓ (`) (28)

, (B, `) =
1’
✓=0

W✓ (B)!✓ (`). (29)

We refer to Appendix A for the full derivation and the expression for
the kernels W⇠✓? , W�✓? , and W✓ . It is important to emphasize
that these kernels only depend on the geometry of the survey and
can be computed in advance. Eventually, the multipole moments of
the AMF correlation function are obtained from b̃ (B, `) as

b̃✓ (B) =
(2✓ + 1)

2

π 1

�1
b̃ (B, `)!✓ (`)d`. (30)

Contrary to the approximate models presented in the previous sec-
tion, the full model does not include any approximation except the
plane-parallel one, and has no additional free parameter.

2.4 Sensitivity to angular systematics

It is interesting to see formally that the AMF overdensity removes
any additive angular contamination. Indeed, if we write the con-
taminated overdensity X(r) + 2(r), where 2 is a contamination field

Table 1. Cosmological parameters of the EZ����� (EZ) and the
N������(NS) simulation. For both simulation ⌦a = 0. The e�ective redshift
of the EZ����� and N������ are Ie� = 0.86 and Ie� = 0.55 respectively.

EZ NS

⌦< 0.307 0.286
⌦1 0.048 0.047
⌘ 0.678 0.700
=B 0.961 0.960

f8 (I = 0) 0.823 0.820
Adrag [Mpc] 147.66 147.15

5 f8 (I = Ie�) 0.469 0.449

Figure 1. Galaxy number density in CMASS (red curve) and ELG (blue
curve) mock samples.

that only depends on the line-of-sight direction, we have for the
windowed AMF overdensity,

� (r) = %(r) (X(r) + 2(r)) � %(r)
π

dA 0=̄(A 0)
�
X(r0) + 2(r0)

�
(31)

= %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0). (32)

To obtain the latter equation we have used that, by definition of
2 and the fact that r and r0 share the same line of sight, 2(r0) =
2(r). Nonetheless, if the contamination field modulates the observed
number of galaxies, as for instance in the case varying survey depth
or galactic extinction (e.g. Shafer & Huterer 2015), 2(r) cannot be
erased and will factorize � (r).

3 TEST ON MOCK SAMPLES

3.1 Description of the mock samples

In order to test the AMF correlation function model presented in the
previous section, we make use of NSeries mocks (Alam et al. 2017)
and eBOSS EZmocks (Zhao et al. 2020). These mocks are designed
to reproduce di�erent galaxy samples of the BOSS and eBOSS
surveys. We concentrate in this analysis on the BOSS constant mass
galaxy (CMASS) and eBOSS emission-line galaxy (ELG) samples,
which cover the redshift intervals 0.43 < I < 0.7 and 0.7 < I < 1.1
respectively.
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position r in the survey. If we define the windowed AMF overdensity
field � (r) as

� (r) = %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0), (20)

where r and r0 are collinear, the AMF correlation function is

b̃ (s) ⌘
Ø

d3A � (r)� (r + s)Ø
d3A %(r)%(r + s)

. (21)

We find that the expected value of the latter estimator is

b̃ (s) = b (s) � ⇠ (s)
, (s) +

�(s)
, (s) , (22)

where b (s) is the standard anisotropic correlation function and

⇠ (s) =
π

d3A %(r)%(r + s)
π

dA 0=̄(A 0)b (r0 � r) (23)

+
π

dA 00=̄(A 00)b
�
r00 � r � s

� �
,

�(s) =
π

d3A %(r)%(r + s)
π

dA 00=̄(A 00)
π

dA 0=̄(A 0)b (r0 � r00),
(24)

, (s) =
π

d3A %(r)%(r + s). (25)

The geometrical configuration and details of the derivation are
given in Appendix A, we only summarise here the main results.
The integrals in the expressions for �(s) and ⇠ (s) can be simplified
and rearranged, and in the end we find that the AMF correlation
function can be written as

b̃ (B, `) = b (B, `) � ⇠ (B, `)
, (B, `) +

�(B, `)
, (B, `) (26)

where

⇠ (B, `) =
1’
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We refer to Appendix A for the full derivation and the expression for
the kernels W⇠✓? , W�✓? , and W✓ . It is important to emphasize
that these kernels only depend on the geometry of the survey and
can be computed in advance. Eventually, the multipole moments of
the AMF correlation function are obtained from b̃ (B, `) as

b̃✓ (B) =
(2✓ + 1)

2

π 1

�1
b̃ (B, `)!✓ (`)d`. (30)

Contrary to the approximate models presented in the previous sec-
tion, the full model does not include any approximation except the
plane-parallel one, and has no additional free parameter.

2.4 Sensitivity to angular systematics

It is interesting to see formally that the AMF overdensity removes
any additive angular contamination. Indeed, if we write the con-
taminated overdensity X(r) + 2(r), where 2 is a contamination field

Table 1. Cosmological parameters of the EZ����� (EZ) and the
N������(NS) simulation. For both simulation ⌦a = 0. The e�ective redshift
of the EZ����� and N������ are Ie� = 0.86 and Ie� = 0.55 respectively.

EZ NS

⌦< 0.307 0.286
⌦1 0.048 0.047
⌘ 0.678 0.700
=B 0.961 0.960

f8 (I = 0) 0.823 0.820
Adrag [Mpc] 147.66 147.15

5 f8 (I = Ie�) 0.469 0.449

Figure 1. Galaxy number density in CMASS (red curve) and ELG (blue
curve) mock samples.

that only depends on the line-of-sight direction, we have for the
windowed AMF overdensity,

� (r) = %(r) (X(r) + 2(r)) � %(r)
π

dA 0=̄(A 0)
�
X(r0) + 2(r0)

�
(31)

= %(r)X(r) � %(r)
π

dA 0=̄(A 0)X(r0). (32)

To obtain the latter equation we have used that, by definition of
2 and the fact that r and r0 share the same line of sight, 2(r0) =
2(r). Nonetheless, if the contamination field modulates the observed
number of galaxies, as for instance in the case varying survey depth
or galactic extinction (e.g. Shafer & Huterer 2015), 2(r) cannot be
erased and will factorize � (r).

3 TEST ON MOCK SAMPLES

3.1 Description of the mock samples

In order to test the AMF correlation function model presented in the
previous section, we make use of NSeries mocks (Alam et al. 2017)
and eBOSS EZmocks (Zhao et al. 2020). These mocks are designed
to reproduce di�erent galaxy samples of the BOSS and eBOSS
surveys. We concentrate in this analysis on the BOSS constant mass
galaxy (CMASS) and eBOSS emission-line galaxy (ELG) samples,
which cover the redshift intervals 0.43 < I < 0.7 and 0.7 < I < 1.1
respectively.
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The NSeries galaxy mocks are based on a N-body simulation
populated with a single halo occupation distribution (HOD) model.
These were built to reproduce the observed North Galactic Cap
(NGC) subset of the BOSS CMASS galaxy sample, which covers
the redshift range 0.43 < I < 0.7 and has an e�ective redshift
of Ie� = 0.55. There are 84 mocks in total, which have a very
realistic small-scale clustering imprinted. We refer the reader to
Alam et al. (2017) for the detailed description of these mocks. Given
the modest number of mock realisations, we do not use them directly
to estimate correlation function covariance matrices. Instead, the
latter are estimated from 2048 realisations of the same volume
based on MD-Patchy approximated method (Kitaura et al. 2014).

The EZmocks were built by gravitationally evolving dark mat-
ter particles with Zel´ dovich approximation. They include a non-
linear, non-local, and scale-dependent galaxy bias prescription al-
lowing the addition of galaxies on top of the dark matter field.
The two-point statistics (monopole and quadrupole) in these mocks
agree with N-body simulation within 1% down to 10 ⌘�1 Mpc
(Chuang & al. 2015). We use 500 ELG EZmocks which mimic the
geometry and observed clustering of the eBOSS ELG SGC dataset.
These mocks cover the redshift range 0.7 < I < 1.1 and have an
e�ective redshift of Ie� = 0.86. We refer the reader to Zhao et al.
(2020) for the detailed description of these mocks. We measure in
all the mocks the standard and AMF correlation functions in red-
shift space using the estimators in Eqs. 1 and 3, respectively. We
used random catalogues with approximately 50 times the number
of galaxies in the mock data. The shu�ed random catalogues have
randomly drawn angular positions from the mock data catalogues
but the same radial distribution as that imprinted in the standard
random catalogues, hence, we do not include the radial integral
constraint correction (de Mattia & Ruhlmann-Kleider 2019).

3.2 Implementation of the full model

In order to calculate the full-model kernels for CMASS and ELG,
we use a similar method as presented in Breton & de la Torre (2021).
We first build angular ������� (Górski et al. 2005) maps from the
survey footprints used to create the mocks. These maps are used to
estimate with �������� (Szapudi et al. 2001; Chon et al. 2004) the
angular selection function correlation function, �(\). The =̄(j) is
derived from CMASS and ELG randoms catalogs and is shown in
Fig. 1. Redshift are converted to comoving distance in the corre-
sponding fiducial cosmology of the simulation, given in Table 1.
From these two ingredients, the kernels can be calculated numer-
ically using multi-dimensional Monte-Carlo integration methods.
Specifically, we use the ���� library (Hahn 2005) in a similar way
as in Breton & de la Torre (2021) to solve numerically the kernel
integrals given in Appendix A. A code using this implementation
to compute the kernels for any survey geometry is provided at XX.
Once the kernels computed, the cross-correlation and angular terms
are obtained by integrating over � the kernels times the correlation
function. In practice, this integral is performed as a Riemmann sum.
We find that a � binning of 1 Mpc/h is su�cient to have a stable
model estimation.

3.3 Test of the models

In order to assess the di�erent models presented previously, we
compare their prediction to the mean AMF correlation function
measured in the CMASS mocks. The models take as input the
redshift-space galaxy correlation function and sample number den-

Figure 2. Comparison of AMF correlation function model predictions (✓ =
0: monopole, ✓ = 2: quadrupole, ✓ = 4: hexadecapole) with the mean of
CMASS mocks AMF correlation function measurements. The black solid
line corresponds to the full model (Eq. 22), the green short-dashed line to
the Tamone et al. (2020) model, and the red long-dashed line to the original
Burden et al. (2017) ansatz.

sity as a function of radial distance. For the purpose of testing AMF
models, we fix those to their mean mocks values.

We present in Fig. 2 the comparison between the original ansatz
from Burden et al. (2017), the model used in Tamone et al. (2020),
the full model presented in this paper, and mock predictions. We
can see that the original ansatz allows recovering only qualitatively
the mock AMF correlation function mutipole moments, with a sig-
nificant shift in amplitude. Conversely, Tamone et al. (2020) and
full model provide similar predictions, very close to the mock mea-
surement. In fact, looking closely at the di�erences between these
two models, we see that the full model performs best, particularly
on the smallest scales of the monopole and on the hexadecapole. It
is worth recalling that Tamone et al. (2020) model has a free param-
eter, j̄, which we optimised here to best reproduce the measured
AMF correlation in the mocks.

In evaluating the models, we have in practice to define the
limit of integration for the integral over B k or � in Eqs. 15 and 22.
The impact of this choice on the full model accuracy is presented
in Fig. 3. The latter shows the relative di�erence of the full model
prediction with respect to mock prediction, for di�erent values of
�max varying from 200 to 500 Mpc/h. �max = 500 Mpc/h cor-
responds approximately to the maximum scale possibly probed in
the mock survey volume. The red area in Fig. 3 represents the 1f
deviation on the mean of the mock. We find that, as expected, by
increasing �max, the prediction converges to the expected signal,
particularly in the monopole. For the quadrupole and hexadecapole,
the prediction already converges for �max = 200 Mpc/h. We note
that in this figure, the two strong departures from zero around the
BAO peak in the monopole and on small scales in the quadrupole
and hexadecapole, are artifacts due to the zero crossing of these
functions. Overall, in the case of the CMASS sample, we find that
�max = 400 Mpc/h allows the recovery of the mocks prediction
within the percent. While the quadrupole signal is retrieved at all
scales below 1 f, we can see larger shifts for the monopole and
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Figure 5. Best-fit RSD models to the mean of the standard and AMF corre-
lation function monopole (top) and quadrupole (middle), and hexadecapole
(bottom) measured on the CMASS mocks.

hexadecapole on quasilinear scale, however this remains a small
e�ect. The 1f statistical errors obtained on the parameters from the
AMF analysis increase by 20 %, 18 % and 50 % for Uk , U?, 5 f8,
respectively. As expected, the signal is decreased in the AMF cor-
relation function leading to worse constraints. The most a�ected
parameter constraints are those for 5 f8. The joint posterior likeli-
hood contours for all combinations of parameters is shown in Fig.
6. These contours were obtained with the ensemble sampler ZEUS
(Karamanis & Beutler 2020; Karamanis et al. 2021). We can see
that, while AMF analysis exhibits larger contours compared to the
standard analysis, the direction of degeneracy between the di�erent
parameters is similar.

For the ELG, we choose to provide cosmological measure-
ments only considering the monopole and quadrupole moments.
Indeed, we found that including the hexadecapole in the standard
analysis introduces a 3f shift on Uk . Since this shift is not present
with the N-Body mocks, we conclude that we cannot safely compare
standard and AMF full shape cosmological measurements when in-
cluding the hexadecapole from EZmocks. As for the NSeries mocks,
the AMF full shape modeling provides unbiased constraints with
respect to the standard full shape modelling, with a nearly 1f shift
for Uk . We can also note that for both types of mocks, the bias for
the growth of stucture is significantly lower for 5 f8rs.

Figure 6. Posterior probability contours on U?, U? and 5 f8 obtained when
fitting the mean of the standard (blue) and AMF (red) multipole moments
in the full-shape RSD analysis of CMASS mocks.

4.4 BAO-only results

We perform a BAO-only analysis on the mean mock AMF and
standard correlation function. We only consider pre-reconstruction
correlation functions, i.e. we do not apply any BAO reconstruction
scheme as usually done in real data (e.g. Bautista et al. 2021). Only
the monopole and quadrupole are used, as the hexadecapole does
not add much constraints in a BAO fit, Bautista et al. (2021). We fit
both multipoles in the range 40 < B < 150 ⌘�1Mpc. The constraints
on Uk , U? that we obtain are given in Table 2 for the CMASS sample
and the best-fitting models are shown in Fig. 7. In the BAO-only case
as well, we find that we can recover almost the same constraints with
the AMF and standard analyses. Here, central values on Uk , U? are
within less than 1f of that from the standard analysis. The statistical
uncertainty on the parameters increases by less than 5%. Overall,
the BAO-only analysis of the AMF correlation function is almost
as e�cient as the standard BAO pre-reconstruction analysis. The
joint posterior likelihood contours for Uk and U? is shown in Fig. 8.
These contours were computed using the minimization algorithm
�M�����.1 As for the RSD case, we see that, while AMF analysis
exhibit slightly larger uncertainty compared to the standard case,
the direction of degeneracy is the same. For the ELG, we observe a
1.6f shift for Uk . This shift is due to the observed shift in Fig. 4.
Since this shift is not observed with a larger sampled volume, we
conclude that this will not be an issue for future surveys such as DESI
(DESI Collaboration 2016) and Euclid (Amendola & al. 2018) that
will observe many more galaxies over much larger cosmological
volumes.

1 https://iminuit.readthedocs.io/
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and the best-fitting models are shown in Fig. 7. In the BAO-only case
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the AMF and standard analyses. Here, central values on Uk , U? are
within less than 1f of that from the standard analysis. The statistical
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the BAO-only analysis of the AMF correlation function is almost
as e�cient as the standard BAO pre-reconstruction analysis. The
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the direction of degeneracy is the same. For the ELG, we observe a
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BAO-only fit 

• Constraints are similar
• No significant bias wrt standard approach
• Increase of 20% on alpha_parallel

(function of H(z))
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Table 2. RSD and BAO results for the mean of NSeries (CMASS sample) and EZmocks (ELG sample). We assume in each analysis the corresponding fiducial
cosmology of the mocks. We therefore expect the AP distortions parameters Uk and U? to be equal to 1. For the growth rate, we expect 5 f8 = 0.469 and
5 f8 = 0.449 for CMASS and ELG respectively. For full-shape analysis, we also present the statistical error corresponding to one realisation after the slash.

Method U? Uk 5 f8 5 f8rs

CMASS

RSD M+Q+H standard 0.9972 ± (0.0019/0.017) 1.0032 ± (0.0032/0.029) 0.4700 ± (0.0044/0.04) 0.4694 ± 0.0044
RSD M+Q+H AMF 0.9962 ± 0.0023 0.9987 ± 0.0038 0.4686 ± 0.0067 0.4696 ± 0.0067
BAO standard 1.0056 ± 0.0022 1.0007 ± 0.0044
BAO AMF 1.0043 ± 0.0026 1.0011 ± 0.0046

ELG

RSD M+Q standard 1.0014 ± (0.0043/0.096) 1.0056 ± (0.0066/0.147) 0.4570 ± (0.0053/0.118) 0.4550 ± 0.0053
RSD M+Q AMF 1.0008 ± 0.0049 1.0092 ± 0.0067 0.4586 ± 0.0065 0.4566 ± 0.0065
BAO standard 1.0023 ± 0.0043 1.0063 ± 0.0062
BAO AMF 1.0009 ± 0.0051 1.0171 ± 0.0066

Figure 7. Best-fit BAO models to the mean of the standard and AMF
correlation function monopole and quadrupole measured in the CMASS
mocks.

5 DISCUSSION AND CONCLUSION

In this paper, we studied the use of a modified galaxy two-point
correlation function for cosmological inference, whose particular-
ity is to suppress angular modes, and in turn, any potential angular
observational systematic errors. This statistic, the AMF two-point
correlation function, was first introduced by Burden et al. (2017).
We extended the latter work and derived a full model to describe
this statistic, given a model of the standard redshift-space two-point
correlation function. We compared the model to mock galaxy sam-
ples of luminous red and emission-line galaxies measurements at

Figure 8. Posterior probability contours on U?, U? when fitting standard
(blue) and AMF (red) multipole moments (monopole and quadrupole only)
in the BAO-only analysis on the CMASS sample.

0.43 < I < 1.1 and found that it outperforms all previous proposed
approximate models. Moreover, it uniquely allows reproducing the
full shape of the AMF correlation function, when the underlying cor-
relation function is known, without introducing any new nuisance
parameter. This makes possible the performance of a full-shape
redshift-space distortions analysis with this statistic.

As a proof of concept, we performed a cosmological analysis
of the AMF correlation function in the CMASS and ELG mocks,
in a similar fashion as we would do with real survey data. We found
that we can recover nearly unbiased Uk , U?, 5 f8 parameters with
respect to the standard method. There is an increase of 18 � 20%
on U? and Uk statistical uncertainty, and of 50% on 5 f8 in those
mock samples.

Current and future large spectroscopic surveys such as DESI
or Euclid will probe much larger universal volumes. This will allow
reducing considerably the statistical errors on cosmological param-
eters. For those, it will be crucial to control the level of systematic
errors at a extremely low level. This is today a challenge and the work
presented here paves the way towards achieving this goal. By con-
struction, the AMF two-point correlation function is less constrain-
ing compared to the standard correlation function. Nonetheless, this
approach can be advantageously used in the case of inhomogeneous
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approximate models. Moreover, it uniquely allows reproducing the
full shape of the AMF correlation function, when the underlying cor-
relation function is known, without introducing any new nuisance
parameter. This makes possible the performance of a full-shape
redshift-space distortions analysis with this statistic.

As a proof of concept, we performed a cosmological analysis
of the AMF correlation function in the CMASS and ELG mocks,
in a similar fashion as we would do with real survey data. We found
that we can recover nearly unbiased Uk , U?, 5 f8 parameters with
respect to the standard method. There is an increase of 18 � 20%
on U? and Uk statistical uncertainty, and of 50% on 5 f8 in those
mock samples.
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or Euclid will probe much larger universal volumes. This will allow
reducing considerably the statistical errors on cosmological param-
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Final constraints

• Details cosmological constraints:

• AMF is less constraining but free from any angular systematics
• Very useful for DESI and Euclid, particularly for testing residual angular

systematics in the standard approach
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Magnification bias

• Magnification bias: flux and size of objects are magnified and any
galaxy selection will be affected by that
• Modification of the observed number of sources
• Conservation of surface brightness and counts: 

Michel-Andrès Breton et al.: Impact of lensing magnification on RSD

where r = |r| is the scale, vz is the velocity along the line of sight
uz with vz(x2)�vz(x1) = (ẋ2�ẋ1) ·uz/H with H the Hubble pa-
rameter, and M0, M1 and M2 are integration kernels containing
the parameters of the model (Wang et al. 2014). The main di↵er-
ence between CLPT and other Lagrangian perturbation theories
such as in Matsubara (2008b), lies in the resummation employed
in the kernels.

2.1.2. Gaussian streaming model

The CLPT predictions for the real-space correlation and the
two first moments of the pairwise velocity distribution, that is
Eqs. (6) to (8), can then be used in the Gaussian streaming model
(Reid & White 2011) to predict the anisotropic two-point cor-
relation function in redshift space. In this model, the redshift-
space correlation function is recovered by convolving the real-
space correlation function along the line of sight, with a scale-
dependent pairwise velocity distribution taken to be Gaussian.
This gives

1 + ⇠s(r?, rk) =
Z

dy
p

2⇡�2(r, ⌫)
[1 + ⇠(r)]

⇥ exp

8>><
>>:�
⇥
rk � y � µv12(r)

⇤2

2�2(r, ⌫)

9>>=
>>; , (9)

where rk and r? are the components of the separation vector par-
allel and perpendicular to the line of sight, r

2 = r
2
? + y

2, ⌫ = y/r
is the end-point angle definition, and �2(r, ⌫) = �2

12(r, ⌫) + �2
v
,

with �v an additional velocity dispersion term that accounts for
small-scale random motions in virialized objects. From Eq. (9)
it is fairly easy to compute the multipole moments of the cor-
relation function by integrating over the Legendre polynomials.
We note that one limitation of the Gaussian streaming model as
presented here, is that it assumes the distant-observer approxi-
mation, meaning that it neglects wide-angle e↵ects (Szalay et al.
1998; Szapudi 2004; Pápai & Szapudi 2008; Raccanelli et al.
2010; Reimberg et al. 2016; Castorina & White 2018; Beutler
et al. 2019; Taruya et al. 2020). In our case, we restrict our
analysis to relatively high redshifts (z > 0.7) so that we can
safely work under this approximation. Our implementation of
the CLPT-GS model is publicly available1.

2.2. Magnification bias

Beyond the redshift-space distortions induced by peculiar veloc-
ities, the next dominant e↵ect at z > 1 that modifies the apparent
distribution of galaxies is magnification bias. It originates from
the fact that some regions of the sky are magnified (demagni-
fied) due to gravitational lensing, meaning that they contain less
(more) sources than on average. If we consider a survey of galax-
ies selected in flux, gravitational lensing will modify galaxy ap-
parent fluxes, so that some of them will enter or exit from the
sample. This selection e↵ect will impact the observed clustering
of galaxies. It is worth noting that magnification bias is not the
only e↵ect that arises, as there are also additional e↵ects that de-
pends on peculiar velocities or gravitational potential (Challinor
& Lewis 2011). However, at high redshift, magnification bias is
the dominant one and is the focus of this work.

1 https://github.com/mianbreton/CLPT_GS

2.2.1. Impact on the number counts

The surface brightness of sources, defined as the flux per unit
solid angle, is conserved through gravitational lensing. This im-
plies that the apparent size and flux of a source are simultane-
ously modified as

S
0(✓) = µ(✓)S (✓), (10)

d⌦0(✓) = µ(✓)d⌦(✓), (11)

where S , µ and d⌦ are respectively the flux, magnification and
solid angle in the direction ✓ on the sky (in the following we
will omit the angular dependence), and a prime denotes a mag-
nified quantity. The conservation of the number of sources can
be written as

n
0(m0)dm

0d⌦0 = n(m)dmd⌦, (12)

where n(m) is the number density of sources per unit of solid
angle and per magnitude interval dm, m = �2.5 log(S ) + C is
the magnitude, and C a constant. From this, it is straightforward
to infer the magnified magnitude m

0 = m � 2.5 log(µ). The total
number of observed sources up to a given magnitude limit ml is
Z

ml

�1

n
0(m0)dm

0 = µ�1
Z

ml

�1

n
�
m
0 + 2.5 log(µ)

�
dm
0 (13)

= µ�1
Z

ml+2.5 log(µ)

�1

n(m)dm. (14)

Ultimately, this can be rewritten in terms of cumulative number
densities as

n
0(< ml) = µ�1

n
�
< ml + 2.5 log(µ)

�
. (15)

One generally considers a simple model for the luminosity func-
tion, a power law such that (Schneider et al. 1992; Broadhurst
et al. 1995)

n(< m) / 10ms, (16)

where s is defined as the logarithmic slope of the cumulative dis-
tribution and is a property of the target sample. We note that for
this specific function, cumulative and di↵erential distributions
have the same shape. By inserting Eq. (16) in Eq. (15), we ob-
tain that

�len = µ
2.5s�1

� 1 (17)
= (5s � 2), (18)

where �len = n
0(< ml)/n(< ml) � 1 is the perturbation on the

number count in a given direction on the sky and  is the lensing
convergence. In the second line we have performed a first-order
Taylor expansion on the magnification as µ = 1 + 2 (hereafter
called the ‘weak-lensing limit’), with || ⌧ 1. Gravitational lens-
ing induces two competing terms on the observed number counts
as seen in Eq. (18): the s-dependent term implies that in magni-
fied regions (µ > 1,  > 0), the flux of sources increases, so
that we are more likely to find objects (and conversely, there are
less chances to find objects in demagnified regions). The second
term, which is usually referred to as ‘dilution bias’, describes
the change in size of solid angles on the sky. Magnified regions
take more space, so that for a constant density, we should find
less objects in those regions than on average. These two e↵ects
cancel exactly for s = 0.4.
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where n(m) is the number density of sources per unit of solid
angle and per magnitude interval dm, m = �2.5 log(S ) + C is
the magnitude, and C a constant. From this, it is straightforward
to infer the magnified magnitude m

0 = m � 2.5 log(µ). The total
number of observed sources up to a given magnitude limit ml is
Z

ml

�1

n
0(m0)dm

0 = µ�1
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Ultimately, this can be rewritten in terms of cumulative number
densities as

n
0(< ml) = µ�1

n
�
< ml + 2.5 log(µ)

�
. (15)

One generally considers a simple model for the luminosity func-
tion, a power law such that (Schneider et al. 1992; Broadhurst
et al. 1995)

n(< m) / 10ms, (16)

where s is defined as the logarithmic slope of the cumulative dis-
tribution and is a property of the target sample. We note that for
this specific function, cumulative and di↵erential distributions
have the same shape. By inserting Eq. (16) in Eq. (15), we ob-
tain that

�len = µ
2.5s�1

� 1 (17)
= (5s � 2), (18)

where �len = n
0(< ml)/n(< ml) � 1 is the perturbation on the

number count in a given direction on the sky and  is the lensing
convergence. In the second line we have performed a first-order
Taylor expansion on the magnification as µ = 1 + 2 (hereafter
called the ‘weak-lensing limit’), with || ⌧ 1. Gravitational lens-
ing induces two competing terms on the observed number counts
as seen in Eq. (18): the s-dependent term implies that in magni-
fied regions (µ > 1,  > 0), the flux of sources increases, so
that we are more likely to find objects (and conversely, there are
less chances to find objects in demagnified regions). The second
term, which is usually referred to as ‘dilution bias’, describes
the change in size of solid angles on the sky. Magnified regions
take more space, so that for a constant density, we should find
less objects in those regions than on average. These two e↵ects
cancel exactly for s = 0.4.
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where r = |r| is the scale, vz is the velocity along the line of sight
uz with vz(x2)�vz(x1) = (ẋ2�ẋ1) ·uz/H with H the Hubble pa-
rameter, and M0, M1 and M2 are integration kernels containing
the parameters of the model (Wang et al. 2014). The main di↵er-
ence between CLPT and other Lagrangian perturbation theories
such as in Matsubara (2008b), lies in the resummation employed
in the kernels.

2.1.2. Gaussian streaming model

The CLPT predictions for the real-space correlation and the
two first moments of the pairwise velocity distribution, that is
Eqs. (6) to (8), can then be used in the Gaussian streaming model
(Reid & White 2011) to predict the anisotropic two-point cor-
relation function in redshift space. In this model, the redshift-
space correlation function is recovered by convolving the real-
space correlation function along the line of sight, with a scale-
dependent pairwise velocity distribution taken to be Gaussian.
This gives

1 + ⇠s(r?, rk) =
Z

dy
p
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where rk and r? are the components of the separation vector par-
allel and perpendicular to the line of sight, r

2 = r
2
? + y

2, ⌫ = y/r
is the end-point angle definition, and �2(r, ⌫) = �2

12(r, ⌫) + �2
v
,

with �v an additional velocity dispersion term that accounts for
small-scale random motions in virialized objects. From Eq. (9)
it is fairly easy to compute the multipole moments of the cor-
relation function by integrating over the Legendre polynomials.
We note that one limitation of the Gaussian streaming model as
presented here, is that it assumes the distant-observer approxi-
mation, meaning that it neglects wide-angle e↵ects (Szalay et al.
1998; Szapudi 2004; Pápai & Szapudi 2008; Raccanelli et al.
2010; Reimberg et al. 2016; Castorina & White 2018; Beutler
et al. 2019; Taruya et al. 2020). In our case, we restrict our
analysis to relatively high redshifts (z > 0.7) so that we can
safely work under this approximation. Our implementation of
the CLPT-GS model is publicly available1.

2.2. Magnification bias

Beyond the redshift-space distortions induced by peculiar veloc-
ities, the next dominant e↵ect at z > 1 that modifies the apparent
distribution of galaxies is magnification bias. It originates from
the fact that some regions of the sky are magnified (demagni-
fied) due to gravitational lensing, meaning that they contain less
(more) sources than on average. If we consider a survey of galax-
ies selected in flux, gravitational lensing will modify galaxy ap-
parent fluxes, so that some of them will enter or exit from the
sample. This selection e↵ect will impact the observed clustering
of galaxies. It is worth noting that magnification bias is not the
only e↵ect that arises, as there are also additional e↵ects that de-
pends on peculiar velocities or gravitational potential (Challinor
& Lewis 2011). However, at high redshift, magnification bias is
the dominant one and is the focus of this work.

1 https://github.com/mianbreton/CLPT_GS

2.2.1. Impact on the number counts

The surface brightness of sources, defined as the flux per unit
solid angle, is conserved through gravitational lensing. This im-
plies that the apparent size and flux of a source are simultane-
ously modified as
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where S , µ and d⌦ are respectively the flux, magnification and
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will omit the angular dependence), and a prime denotes a mag-
nified quantity. The conservation of the number of sources can
be written as
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where n(m) is the number density of sources per unit of solid
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the magnitude, and C a constant. From this, it is straightforward
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One generally considers a simple model for the luminosity func-
tion, a power law such that (Schneider et al. 1992; Broadhurst
et al. 1995)

n(< m) / 10ms, (16)

where s is defined as the logarithmic slope of the cumulative dis-
tribution and is a property of the target sample. We note that for
this specific function, cumulative and di↵erential distributions
have the same shape. By inserting Eq. (16) in Eq. (15), we ob-
tain that
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2.5s�1

� 1 (17)
= (5s � 2), (18)

where �len = n
0(< ml)/n(< ml) � 1 is the perturbation on the

number count in a given direction on the sky and  is the lensing
convergence. In the second line we have performed a first-order
Taylor expansion on the magnification as µ = 1 + 2 (hereafter
called the ‘weak-lensing limit’), with || ⌧ 1. Gravitational lens-
ing induces two competing terms on the observed number counts
as seen in Eq. (18): the s-dependent term implies that in magni-
fied regions (µ > 1,  > 0), the flux of sources increases, so
that we are more likely to find objects (and conversely, there are
less chances to find objects in demagnified regions). The second
term, which is usually referred to as ‘dilution bias’, describes
the change in size of solid angles on the sky. Magnified regions
take more space, so that for a constant density, we should find
less objects in those regions than on average. These two e↵ects
cancel exactly for s = 0.4.
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where r = |r| is the scale, vz is the velocity along the line of sight
uz with vz(x2)�vz(x1) = (ẋ2�ẋ1) ·uz/H with H the Hubble pa-
rameter, and M0, M1 and M2 are integration kernels containing
the parameters of the model (Wang et al. 2014). The main di↵er-
ence between CLPT and other Lagrangian perturbation theories
such as in Matsubara (2008b), lies in the resummation employed
in the kernels.

2.1.2. Gaussian streaming model

The CLPT predictions for the real-space correlation and the
two first moments of the pairwise velocity distribution, that is
Eqs. (6) to (8), can then be used in the Gaussian streaming model
(Reid & White 2011) to predict the anisotropic two-point cor-
relation function in redshift space. In this model, the redshift-
space correlation function is recovered by convolving the real-
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with �v an additional velocity dispersion term that accounts for
small-scale random motions in virialized objects. From Eq. (9)
it is fairly easy to compute the multipole moments of the cor-
relation function by integrating over the Legendre polynomials.
We note that one limitation of the Gaussian streaming model as
presented here, is that it assumes the distant-observer approxi-
mation, meaning that it neglects wide-angle e↵ects (Szalay et al.
1998; Szapudi 2004; Pápai & Szapudi 2008; Raccanelli et al.
2010; Reimberg et al. 2016; Castorina & White 2018; Beutler
et al. 2019; Taruya et al. 2020). In our case, we restrict our
analysis to relatively high redshifts (z > 0.7) so that we can
safely work under this approximation. Our implementation of
the CLPT-GS model is publicly available1.

2.2. Magnification bias

Beyond the redshift-space distortions induced by peculiar veloc-
ities, the next dominant e↵ect at z > 1 that modifies the apparent
distribution of galaxies is magnification bias. It originates from
the fact that some regions of the sky are magnified (demagni-
fied) due to gravitational lensing, meaning that they contain less
(more) sources than on average. If we consider a survey of galax-
ies selected in flux, gravitational lensing will modify galaxy ap-
parent fluxes, so that some of them will enter or exit from the
sample. This selection e↵ect will impact the observed clustering
of galaxies. It is worth noting that magnification bias is not the
only e↵ect that arises, as there are also additional e↵ects that de-
pends on peculiar velocities or gravitational potential (Challinor
& Lewis 2011). However, at high redshift, magnification bias is
the dominant one and is the focus of this work.

1 https://github.com/mianbreton/CLPT_GS

2.2.1. Impact on the number counts

The surface brightness of sources, defined as the flux per unit
solid angle, is conserved through gravitational lensing. This im-
plies that the apparent size and flux of a source are simultane-
ously modified as
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0(✓) = µ(✓)S (✓), (10)

d⌦0(✓) = µ(✓)d⌦(✓), (11)

where S , µ and d⌦ are respectively the flux, magnification and
solid angle in the direction ✓ on the sky (in the following we
will omit the angular dependence), and a prime denotes a mag-
nified quantity. The conservation of the number of sources can
be written as
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0d⌦0 = n(m)dmd⌦, (12)

where n(m) is the number density of sources per unit of solid
angle and per magnitude interval dm, m = �2.5 log(S ) + C is
the magnitude, and C a constant. From this, it is straightforward
to infer the magnified magnitude m
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Ultimately, this can be rewritten in terms of cumulative number
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One generally considers a simple model for the luminosity func-
tion, a power law such that (Schneider et al. 1992; Broadhurst
et al. 1995)

n(< m) / 10ms, (16)

where s is defined as the logarithmic slope of the cumulative dis-
tribution and is a property of the target sample. We note that for
this specific function, cumulative and di↵erential distributions
have the same shape. By inserting Eq. (16) in Eq. (15), we ob-
tain that
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� 1 (17)
= (5s � 2), (18)

where �len = n
0(< ml)/n(< ml) � 1 is the perturbation on the

number count in a given direction on the sky and  is the lensing
convergence. In the second line we have performed a first-order
Taylor expansion on the magnification as µ = 1 + 2 (hereafter
called the ‘weak-lensing limit’), with || ⌧ 1. Gravitational lens-
ing induces two competing terms on the observed number counts
as seen in Eq. (18): the s-dependent term implies that in magni-
fied regions (µ > 1,  > 0), the flux of sources increases, so
that we are more likely to find objects (and conversely, there are
less chances to find objects in demagnified regions). The second
term, which is usually referred to as ‘dilution bias’, describes
the change in size of solid angles on the sky. Magnified regions
take more space, so that for a constant density, we should find
less objects in those regions than on average. These two e↵ects
cancel exactly for s = 0.4.
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2.2.2. Two-point correlation function correction

To be consistent, one should in principle derive the lensing cor-
rection associated to magnification bias on the correlation func-
tion, using the same theoretical framework as for RSD. Nonethe-
less, these developments are beyond the scope of the present pa-
per, and instead, we propose a simple correction based on linear
theory, which can be easily used on top of any RSD model.

We start from the observed galaxy number counts, which ac-
counts for density, RSD, and lensing perturbations (the full ex-
pressions accounting for all the terms at first order in metric per-
turbations can be found in Yoo et al. 2009; Challinor & Lewis
2011; Bonvin & Durrer 2011)

� = �den + �rsd + �len, (19)

where �den = b�, b is the Eulerian linear bias, �rsd = �@rvr/H
is the RSD component, where @rvr, and H are respectively the
gradient of the velocity field along the line of sight, and the con-
formal Hubble parameter. The lensing perturbation �len is that of
Eq. (18). We note that the decomposition in Eq. (19) is only true
at first order since it neglects higher-order lensing correlations.

Since the correlation function can be written as ⇠(r) =
h�(x)�(x + r)i, the linear correction that comes from the ad-
dition of lensing magnification in the number counts is

⇠corr(r) = ⇠den-len(r) + ⇠rsd-len(r) + ⇠len-len(r), (20)

where ⇠A-B(r) ⌘ h�A(x)�B(x + r)i. The expressions for the
di↵erent terms in Eq. (20) are derived in Matsubara (2000);
Hui et al. (2007, 2008), and in Tansella et al. (2018a,b) for the
curved-sky case. Precisely, in the latter case we have

⇠A-B(✓, z1, z2) =
Z

dk

k
PR(k)QA�B

k
(✓, z1, z2), (21)

where (✓, z1, z2) defines the separation vector in observed coor-
dinates2, PR(k) is the primordial matter power spectrum, and the
kernels QA�B

k
with A-B = {den-len, rsd-len, len-len} read
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k
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2�2

!
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0
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�
S �+ (�) ⇣2L(k�1, k�, ✓) ,

Q
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(2 � 5s)2

4�1�2
(24)

Z �1
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Z �2

0
d�d�0

(�1��)(�2��0)
��0

S �+ (�)

S �+ (�0)⇣LL(k�, k�0, ✓).

In these equations ⇣ are pure geometrical functions provided in
Appendix B of Tansella et al. (2018a), �i is the comoving dis-
tance to redshift zi, and S D, S V , S �+ are the scaled transfer
functions associated to density, peculiar velocity, and gravita-
tional potentials, respectively. ⇠A-B(✓, z1, z2) in Eq. (21) can be
written in terms of the separations parallel and perpendicular to
2 Here, z1 and z2 are the redshifts of the objects of the pair and ✓ is the
angle between them.

the line of sight, rk and r?, using that rk = �2��1, r? =
q

r2 � r
2
k
,

and r =
q
�2

1 + �
2
2 � 2�1�2 cos ✓.

We implement the magnification bias correction using the
Coffe library3 (Tansella et al. 2018b), which provides directly
⇠den-len, ⇠rsd-len, ⇠len-len in bins of (r?, rk) using curved-sky linear
theory and given an input linear power spectrum. It was noted in
Jelic-Cizmek (2021) that, although there is in general no large
di↵erences between the curved-sky and flat-sky prescriptions
at the scales of interested for us, that is r . 150 h

�1Mpc, the
⇠den-len component is quite sensitive to the adopted prescription.
We therefore adopted the full curved-sky implementation.

Our theoretical model for the redshift-space correlation
function therefore consists in CLPT-GS prediction for non-
linear RSD, and the curved-sky linear theory prediction for
the additional lensing magnification correction. Formally, the
anisotropic correlation function model is given by

⇠model(r?, rk) = ⇠CLPT-GS(r?, rk) + ⇠corr(r?, rk). (25)

A final step involves evaluating ⇠model at coordinates (r, ⌫) us-
ing that r =

q
r

2
?
+ r

2
k

and ⌫ = rk/r, and computing associated
multipole moments as

⇠model
` (r) =

2` + 1
2

Z 1

�1
⇠model(r, ⌫)L`(⌫)d⌫, (26)

where L` is the Legendre polynomial of order `.
Finally, we show the multipoles of the correlation function

computed with our model in Fig. 1. First, we remark that in any
case, magnification bias adds a positive contribution to the corre-
lation function multipoles. Second, the full-sky and flat-sky im-
plementations of the lensing corrections give very similar results
which are indistinguishable, except for the case of the hexade-
capole at large comoving separation. Overall, although we use
the full-sky correction in our modelling, we believe that the flat-
sky approximation should also work in likelihood analyses since
the covariance associated with the hexadecapole weakly a↵ects
the final results compared to the monopole and quadrupole.

3. Methods

To investigate the impact of magnification bias on redshift-space
clustering, we use a N-body simulation, which naturally ac-
counts for the fully non-linear structure formation, and extract
light-cones with various magnification bias selections. We then
estimate the first three even multipole moments of the two-point
correlation function in the light-cones, in several tomographic
redshift bins, and run a Monte Carlo Markov Chain (MCMC)
likelihood analysis to sample the parameters of the model de-
scribed in Sect. 2. We present in this section the di↵erent meth-
ods that we used.

3.1. Datasets

The RayGal simulation suite4 (REF) is based on RAMSES
(Teyssier 2002; Guillet & Teyssier 2011). These are dark-matter-
only N-body simulations containing 40963 dark matter (DM)
particles of mass 1.8⇥ 1010

M� in a volume of (2.625 h
�1Gpc)3.

Both ⇤CDM and wCDM versions are available and associated
fiducial cosmological parameters are given in Table 1. The two
3 https://github.com/JCGoran/coffe
4 https://cosmo.obspm.fr/public-datasets/

Article number, page 4 of 15

A&A proofs: manuscript no. output

2.2.2. Two-point correlation function correction

To be consistent, one should in principle derive the lensing cor-
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tion, using the same theoretical framework as for RSD. Nonethe-
less, these developments are beyond the scope of the present pa-
per, and instead, we propose a simple correction based on linear
theory, which can be easily used on top of any RSD model.

We start from the observed galaxy number counts, which ac-
counts for density, RSD, and lensing perturbations (the full ex-
pressions accounting for all the terms at first order in metric per-
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In these equations ⇣ are pure geometrical functions provided in
Appendix B of Tansella et al. (2018a), �i is the comoving dis-
tance to redshift zi, and S D, S V , S �+ are the scaled transfer
functions associated to density, peculiar velocity, and gravita-
tional potentials, respectively. ⇠A-B(✓, z1, z2) in Eq. (21) can be
written in terms of the separations parallel and perpendicular to
2 Here, z1 and z2 are the redshifts of the objects of the pair and ✓ is the
angle between them.

the line of sight, rk and r?, using that rk = �2��1, r? =
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We implement the magnification bias correction using the
Coffe library3 (Tansella et al. 2018b), which provides directly
⇠den-len, ⇠rsd-len, ⇠len-len in bins of (r?, rk) using curved-sky linear
theory and given an input linear power spectrum. It was noted in
Jelic-Cizmek (2021) that, although there is in general no large
di↵erences between the curved-sky and flat-sky prescriptions
at the scales of interested for us, that is r . 150 h

�1Mpc, the
⇠den-len component is quite sensitive to the adopted prescription.
We therefore adopted the full curved-sky implementation.

Our theoretical model for the redshift-space correlation
function therefore consists in CLPT-GS prediction for non-
linear RSD, and the curved-sky linear theory prediction for
the additional lensing magnification correction. Formally, the
anisotropic correlation function model is given by

⇠model(r?, rk) = ⇠CLPT-GS(r?, rk) + ⇠corr(r?, rk). (25)
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where L` is the Legendre polynomial of order `.
Finally, we show the multipoles of the correlation function

computed with our model in Fig. 1. First, we remark that in any
case, magnification bias adds a positive contribution to the corre-
lation function multipoles. Second, the full-sky and flat-sky im-
plementations of the lensing corrections give very similar results
which are indistinguishable, except for the case of the hexade-
capole at large comoving separation. Overall, although we use
the full-sky correction in our modelling, we believe that the flat-
sky approximation should also work in likelihood analyses since
the covariance associated with the hexadecapole weakly a↵ects
the final results compared to the monopole and quadrupole.

3. Methods

To investigate the impact of magnification bias on redshift-space
clustering, we use a N-body simulation, which naturally ac-
counts for the fully non-linear structure formation, and extract
light-cones with various magnification bias selections. We then
estimate the first three even multipole moments of the two-point
correlation function in the light-cones, in several tomographic
redshift bins, and run a Monte Carlo Markov Chain (MCMC)
likelihood analysis to sample the parameters of the model de-
scribed in Sect. 2. We present in this section the di↵erent meth-
ods that we used.

3.1. Datasets

The RayGal simulation suite4 (REF) is based on RAMSES
(Teyssier 2002; Guillet & Teyssier 2011). These are dark-matter-
only N-body simulations containing 40963 dark matter (DM)
particles of mass 1.8⇥ 1010

M� in a volume of (2.625 h
�1Gpc)3.

Both ⇤CDM and wCDM versions are available and associated
fiducial cosmological parameters are given in Table 1. The two
3 https://github.com/JCGoran/coffe
4 https://cosmo.obspm.fr/public-datasets/
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2.2.2. Two-point correlation function correction

To be consistent, one should in principle derive the lensing cor-
rection associated to magnification bias on the correlation func-
tion, using the same theoretical framework as for RSD. Nonethe-
less, these developments are beyond the scope of the present pa-
per, and instead, we propose a simple correction based on linear
theory, which can be easily used on top of any RSD model.

We start from the observed galaxy number counts, which ac-
counts for density, RSD, and lensing perturbations (the full ex-
pressions accounting for all the terms at first order in metric per-
turbations can be found in Yoo et al. 2009; Challinor & Lewis
2011; Bonvin & Durrer 2011)

� = �den + �rsd + �len, (19)

where �den = b�, b is the Eulerian linear bias, �rsd = �@rvr/H
is the RSD component, where @rvr, and H are respectively the
gradient of the velocity field along the line of sight, and the con-
formal Hubble parameter. The lensing perturbation �len is that of
Eq. (18). We note that the decomposition in Eq. (19) is only true
at first order since it neglects higher-order lensing correlations.

Since the correlation function can be written as ⇠(r) =
h�(x)�(x + r)i, the linear correction that comes from the ad-
dition of lensing magnification in the number counts is

⇠corr(r) = ⇠den-len(r) + ⇠rsd-len(r) + ⇠len-len(r), (20)

where ⇠A-B(r) ⌘ h�A(x)�B(x + r)i. The expressions for the
di↵erent terms in Eq. (20) are derived in Matsubara (2000);
Hui et al. (2007, 2008), and in Tansella et al. (2018a,b) for the
curved-sky case. Precisely, in the latter case we have
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where (✓, z1, z2) defines the separation vector in observed coor-
dinates2, PR(k) is the primordial matter power spectrum, and the
kernels QA�B
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In these equations ⇣ are pure geometrical functions provided in
Appendix B of Tansella et al. (2018a), �i is the comoving dis-
tance to redshift zi, and S D, S V , S �+ are the scaled transfer
functions associated to density, peculiar velocity, and gravita-
tional potentials, respectively. ⇠A-B(✓, z1, z2) in Eq. (21) can be
written in terms of the separations parallel and perpendicular to
2 Here, z1 and z2 are the redshifts of the objects of the pair and ✓ is the
angle between them.

the line of sight, rk and r?, using that rk = �2��1, r? =
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We implement the magnification bias correction using the
Coffe library3 (Tansella et al. 2018b), which provides directly
⇠den-len, ⇠rsd-len, ⇠len-len in bins of (r?, rk) using curved-sky linear
theory and given an input linear power spectrum. It was noted in
Jelic-Cizmek (2021) that, although there is in general no large
di↵erences between the curved-sky and flat-sky prescriptions
at the scales of interested for us, that is r . 150 h

�1Mpc, the
⇠den-len component is quite sensitive to the adopted prescription.
We therefore adopted the full curved-sky implementation.

Our theoretical model for the redshift-space correlation
function therefore consists in CLPT-GS prediction for non-
linear RSD, and the curved-sky linear theory prediction for
the additional lensing magnification correction. Formally, the
anisotropic correlation function model is given by

⇠model(r?, rk) = ⇠CLPT-GS(r?, rk) + ⇠corr(r?, rk). (25)

A final step involves evaluating ⇠model at coordinates (r, ⌫) us-
ing that r =

q
r

2
?
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2
k

and ⌫ = rk/r, and computing associated
multipole moments as

⇠model
` (r) =

2` + 1
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⇠model(r, ⌫)L`(⌫)d⌫, (26)

where L` is the Legendre polynomial of order `.
Finally, we show the multipoles of the correlation function

computed with our model in Fig. 1. First, we remark that in any
case, magnification bias adds a positive contribution to the corre-
lation function multipoles. Second, the full-sky and flat-sky im-
plementations of the lensing corrections give very similar results
which are indistinguishable, except for the case of the hexade-
capole at large comoving separation. Overall, although we use
the full-sky correction in our modelling, we believe that the flat-
sky approximation should also work in likelihood analyses since
the covariance associated with the hexadecapole weakly a↵ects
the final results compared to the monopole and quadrupole.

3. Methods

To investigate the impact of magnification bias on redshift-space
clustering, we use a N-body simulation, which naturally ac-
counts for the fully non-linear structure formation, and extract
light-cones with various magnification bias selections. We then
estimate the first three even multipole moments of the two-point
correlation function in the light-cones, in several tomographic
redshift bins, and run a Monte Carlo Markov Chain (MCMC)
likelihood analysis to sample the parameters of the model de-
scribed in Sect. 2. We present in this section the di↵erent meth-
ods that we used.

3.1. Datasets

The RayGal simulation suite4 (REF) is based on RAMSES
(Teyssier 2002; Guillet & Teyssier 2011). These are dark-matter-
only N-body simulations containing 40963 dark matter (DM)
particles of mass 1.8⇥ 1010

M� in a volume of (2.625 h
�1Gpc)3.

Both ⇤CDM and wCDM versions are available and associated
fiducial cosmological parameters are given in Table 1. The two
3 https://github.com/JCGoran/coffe
4 https://cosmo.obspm.fr/public-datasets/
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2.2.2. Two-point correlation function correction

To be consistent, one should in principle derive the lensing cor-
rection associated to magnification bias on the correlation func-
tion, using the same theoretical framework as for RSD. Nonethe-
less, these developments are beyond the scope of the present pa-
per, and instead, we propose a simple correction based on linear
theory, which can be easily used on top of any RSD model.

We start from the observed galaxy number counts, which ac-
counts for density, RSD, and lensing perturbations (the full ex-
pressions accounting for all the terms at first order in metric per-
turbations can be found in Yoo et al. 2009; Challinor & Lewis
2011; Bonvin & Durrer 2011)

� = �den + �rsd + �len, (19)

where �den = b�, b is the Eulerian linear bias, �rsd = �@rvr/H
is the RSD component, where @rvr, and H are respectively the
gradient of the velocity field along the line of sight, and the con-
formal Hubble parameter. The lensing perturbation �len is that of
Eq. (18). We note that the decomposition in Eq. (19) is only true
at first order since it neglects higher-order lensing correlations.

Since the correlation function can be written as ⇠(r) =
h�(x)�(x + r)i, the linear correction that comes from the ad-
dition of lensing magnification in the number counts is

⇠corr(r) = ⇠den-len(r) + ⇠rsd-len(r) + ⇠len-len(r), (20)

where ⇠A-B(r) ⌘ h�A(x)�B(x + r)i. The expressions for the
di↵erent terms in Eq. (20) are derived in Matsubara (2000);
Hui et al. (2007, 2008), and in Tansella et al. (2018a,b) for the
curved-sky case. Precisely, in the latter case we have

⇠A-B(✓, z1, z2) =
Z

dk
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PR(k)QA�B
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(✓, z1, z2), (21)

where (✓, z1, z2) defines the separation vector in observed coor-
dinates2, PR(k) is the primordial matter power spectrum, and the
kernels QA�B
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In these equations ⇣ are pure geometrical functions provided in
Appendix B of Tansella et al. (2018a), �i is the comoving dis-
tance to redshift zi, and S D, S V , S �+ are the scaled transfer
functions associated to density, peculiar velocity, and gravita-
tional potentials, respectively. ⇠A-B(✓, z1, z2) in Eq. (21) can be
written in terms of the separations parallel and perpendicular to
2 Here, z1 and z2 are the redshifts of the objects of the pair and ✓ is the
angle between them.

the line of sight, rk and r?, using that rk = �2��1, r? =
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and r =
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We implement the magnification bias correction using the
Coffe library3 (Tansella et al. 2018b), which provides directly
⇠den-len, ⇠rsd-len, ⇠len-len in bins of (r?, rk) using curved-sky linear
theory and given an input linear power spectrum. It was noted in
Jelic-Cizmek (2021) that, although there is in general no large
di↵erences between the curved-sky and flat-sky prescriptions
at the scales of interested for us, that is r . 150 h

�1Mpc, the
⇠den-len component is quite sensitive to the adopted prescription.
We therefore adopted the full curved-sky implementation.

Our theoretical model for the redshift-space correlation
function therefore consists in CLPT-GS prediction for non-
linear RSD, and the curved-sky linear theory prediction for
the additional lensing magnification correction. Formally, the
anisotropic correlation function model is given by

⇠model(r?, rk) = ⇠CLPT-GS(r?, rk) + ⇠corr(r?, rk). (25)

A final step involves evaluating ⇠model at coordinates (r, ⌫) us-
ing that r =

q
r

2
?
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2
k

and ⌫ = rk/r, and computing associated
multipole moments as

⇠model
` (r) =

2` + 1
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⇠model(r, ⌫)L`(⌫)d⌫, (26)

where L` is the Legendre polynomial of order `.
Finally, we show the multipoles of the correlation function

computed with our model in Fig. 1. First, we remark that in any
case, magnification bias adds a positive contribution to the corre-
lation function multipoles. Second, the full-sky and flat-sky im-
plementations of the lensing corrections give very similar results
which are indistinguishable, except for the case of the hexade-
capole at large comoving separation. Overall, although we use
the full-sky correction in our modelling, we believe that the flat-
sky approximation should also work in likelihood analyses since
the covariance associated with the hexadecapole weakly a↵ects
the final results compared to the monopole and quadrupole.

3. Methods

To investigate the impact of magnification bias on redshift-space
clustering, we use a N-body simulation, which naturally ac-
counts for the fully non-linear structure formation, and extract
light-cones with various magnification bias selections. We then
estimate the first three even multipole moments of the two-point
correlation function in the light-cones, in several tomographic
redshift bins, and run a Monte Carlo Markov Chain (MCMC)
likelihood analysis to sample the parameters of the model de-
scribed in Sect. 2. We present in this section the di↵erent meth-
ods that we used.

3.1. Datasets

The RayGal simulation suite4 (REF) is based on RAMSES
(Teyssier 2002; Guillet & Teyssier 2011). These are dark-matter-
only N-body simulations containing 40963 dark matter (DM)
particles of mass 1.8⇥ 1010

M� in a volume of (2.625 h
�1Gpc)3.

Both ⇤CDM and wCDM versions are available and associated
fiducial cosmological parameters are given in Table 1. The two
3 https://github.com/JCGoran/coffe
4 https://cosmo.obspm.fr/public-datasets/
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2.2.2. Two-point correlation function correction

To be consistent, one should in principle derive the lensing cor-
rection associated to magnification bias on the correlation func-
tion, using the same theoretical framework as for RSD. Nonethe-
less, these developments are beyond the scope of the present pa-
per, and instead, we propose a simple correction based on linear
theory, which can be easily used on top of any RSD model.

We start from the observed galaxy number counts, which ac-
counts for density, RSD, and lensing perturbations (the full ex-
pressions accounting for all the terms at first order in metric per-
turbations can be found in Yoo et al. 2009; Challinor & Lewis
2011; Bonvin & Durrer 2011)

� = �den + �rsd + �len, (19)

where �den = b�, b is the Eulerian linear bias, �rsd = �@rvr/H
is the RSD component, where @rvr, and H are respectively the
gradient of the velocity field along the line of sight, and the con-
formal Hubble parameter. The lensing perturbation �len is that of
Eq. (18). We note that the decomposition in Eq. (19) is only true
at first order since it neglects higher-order lensing correlations.

Since the correlation function can be written as ⇠(r) =
h�(x)�(x + r)i, the linear correction that comes from the ad-
dition of lensing magnification in the number counts is

⇠corr(r) = ⇠den-len(r) + ⇠rsd-len(r) + ⇠len-len(r), (20)

where ⇠A-B(r) ⌘ h�A(x)�B(x + r)i. The expressions for the
di↵erent terms in Eq. (20) are derived in Matsubara (2000);
Hui et al. (2007, 2008), and in Tansella et al. (2018a,b) for the
curved-sky case. Precisely, in the latter case we have

⇠A-B(✓, z1, z2) =
Z

dk

k
PR(k)QA�B

k
(✓, z1, z2), (21)

where (✓, z1, z2) defines the separation vector in observed coor-
dinates2, PR(k) is the primordial matter power spectrum, and the
kernels QA�B
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In these equations ⇣ are pure geometrical functions provided in
Appendix B of Tansella et al. (2018a), �i is the comoving dis-
tance to redshift zi, and S D, S V , S �+ are the scaled transfer
functions associated to density, peculiar velocity, and gravita-
tional potentials, respectively. ⇠A-B(✓, z1, z2) in Eq. (21) can be
written in terms of the separations parallel and perpendicular to
2 Here, z1 and z2 are the redshifts of the objects of the pair and ✓ is the
angle between them.
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We implement the magnification bias correction using the
Coffe library3 (Tansella et al. 2018b), which provides directly
⇠den-len, ⇠rsd-len, ⇠len-len in bins of (r?, rk) using curved-sky linear
theory and given an input linear power spectrum. It was noted in
Jelic-Cizmek (2021) that, although there is in general no large
di↵erences between the curved-sky and flat-sky prescriptions
at the scales of interested for us, that is r . 150 h

�1Mpc, the
⇠den-len component is quite sensitive to the adopted prescription.
We therefore adopted the full curved-sky implementation.

Our theoretical model for the redshift-space correlation
function therefore consists in CLPT-GS prediction for non-
linear RSD, and the curved-sky linear theory prediction for
the additional lensing magnification correction. Formally, the
anisotropic correlation function model is given by

⇠model(r?, rk) = ⇠CLPT-GS(r?, rk) + ⇠corr(r?, rk). (25)

A final step involves evaluating ⇠model at coordinates (r, ⌫) us-
ing that r =

q
r

2
?
+ r

2
k

and ⌫ = rk/r, and computing associated
multipole moments as

⇠model
` (r) =

2` + 1
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⇠model(r, ⌫)L`(⌫)d⌫, (26)

where L` is the Legendre polynomial of order `.
Finally, we show the multipoles of the correlation function

computed with our model in Fig. 1. First, we remark that in any
case, magnification bias adds a positive contribution to the corre-
lation function multipoles. Second, the full-sky and flat-sky im-
plementations of the lensing corrections give very similar results
which are indistinguishable, except for the case of the hexade-
capole at large comoving separation. Overall, although we use
the full-sky correction in our modelling, we believe that the flat-
sky approximation should also work in likelihood analyses since
the covariance associated with the hexadecapole weakly a↵ects
the final results compared to the monopole and quadrupole.

3. Methods

To investigate the impact of magnification bias on redshift-space
clustering, we use a N-body simulation, which naturally ac-
counts for the fully non-linear structure formation, and extract
light-cones with various magnification bias selections. We then
estimate the first three even multipole moments of the two-point
correlation function in the light-cones, in several tomographic
redshift bins, and run a Monte Carlo Markov Chain (MCMC)
likelihood analysis to sample the parameters of the model de-
scribed in Sect. 2. We present in this section the di↵erent meth-
ods that we used.

3.1. Datasets

The RayGal simulation suite4 (REF) is based on RAMSES
(Teyssier 2002; Guillet & Teyssier 2011). These are dark-matter-
only N-body simulations containing 40963 dark matter (DM)
particles of mass 1.8⇥ 1010

M� in a volume of (2.625 h
�1Gpc)3.

Both ⇤CDM and wCDM versions are available and associated
fiducial cosmological parameters are given in Table 1. The two
3 https://github.com/JCGoran/coffe
4 https://cosmo.obspm.fr/public-datasets/
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Fig. 1. Multipoles of the correlation function (monopole, quadrupole
and hexadecapole from top to bottom panels) when accounting for RSD
only (red) with CLPT-GS, RSD and lensing (blue) or RSD and a flat-
sky implementation of the lensing contribution. We consider a ⇤CDM
model with galaxy bias equal to unity and s = 1.2 at z = 1.8.

Model ⌦m �8 w

⇤CDM 0.25733 0.80101 -1.0
wCDM 0.27508 0.85205 -1.2

Table 1. Cosmological parameters, that is ⌦m the total matter density,
�8 the power spectrum normalisation at z = 0, and w the redshift-
independent equation of state for the ⇤CDM and wCDM cosmologies
of RayGal. In both cases we consider flat models, that is ⌦k = 0, with
reduced Hubble parameter h = 0.72, the baryon density ⌦b = 0.04356,
the radiation density ⌦r = 8 ⇥ 10�5 and the spectral index ns = 0.963.

cosmologies have di↵erent ⌦m and �8, and therefore di↵erent
values of f�8(z), since f ⇡ ⌦m(z)0.545 in General Relativity
(REF). This can be seen in Fig. 2, where the fiducial values of
f�8 as a function of redshift for the two cosmologies, as well as
the expectations from Planck Collaboration et al. (2016) ⇤CDM
best-fitting model assuming General Relativity are shown. Inter-
estingly, the values of f�8(z) for the RayGal ⇤CDM (wCDM)
model are close to Planck ones at high (low) redshift. It is worth
emphasising the importance of analysing simulations with dif-
ferent cosmologies, since we can analyse them blindly assuming
a fiducial cosmology, as in observations, and see whether one
can recover unbiased estimates of the growth rate of structure.

3.1.1. RayGal light-cones

Several light-cones have been extracted from the RayGal simu-
lations. In the present work, we use light-cones with an aperture
of 2500 deg2 extending to z = 2, which encompasses the red-

Fig. 2. Evolution of the growth rate of structure as a function of redshift,
for the Planck Collaboration et al. (2016) cosmology in black (with the
error bars shown in grey), as well as the two cosmologies (⇤CDM in
purple, wCDM in cyan) of the RayGal simulations until z = 2.

shift range probed by DESI (DESI Collaboration et al. 2016) and
Euclid (Laureijs et al. 2011) surveys. Those light-cones contain
DM particles, as well as DM haloes identified with the parallel
Friend-of-Friend algorithm pFoF (Roy et al. 2014), using a link-
ing length of b = 0.2. We imposed a minimum of 100 particles
per halo, which leads to halos with mass above 1.8 ⇥ 1012

M�.
The gravitational lensing information is computed in the

light-cones by using the ray-tracing library Magrathea (Reverdy
2014). The latter implements an iterative algorithm that finds
the null geodesics connecting the observer to each source (Bre-
ton et al. 2019), that is, either particles or haloes. This allows
the computation of RSD and lensing e↵ects at the same time,
in a general and accurate way. It is important to emphasize the
fact that the treatment of gravitational lensing does not involve
the Born approximation, which is often used. In our light-cones,
we have roughly 1.2 ⇥ 107 haloes for both cosmologies and we
ray-trace about 4⇥108 randomly selected particles. Having both
haloes and particles enable us to perform a redshift-space clus-
tering analysis on a biased population for the former (and hence,
closer to observations), and for the latter, to carry out a precise
study where the number of matter tracers is maximised.

In Fig. 3, we show the redshift distribution of the halo and
particle samples in the ⇤CDM light-cone, as well as the adopted
tomographic redshift bins. The distributions in the wCDM light-
cone are very similar. The tomographic redshift bins cover a sim-
ilar redshift range as present and future galaxy cosmological sur-
veys, a regime where gravitational lensing e↵ects on galaxy clus-
tering start to be significant (at about z > 1). Regarding the shape
of the redshift distribution, we see for particles that it monotoni-
cally increases, as expected in the case of constant density. One
may however remark that at about z = 2, the N(z) seems to de-
crease. This is an edge e↵ect due to the fact that we built our
light-cones up to z ⇠ 2. To avoid any issue, we use in our anal-
ysis a maximum redshift of zmax = 1.95. For halos, the N(z)
reaches a maximum at around z = 1.2 and later decreases. This
can be explained by the combined e↵ect of the halo formation
and limited mass resolution in the simulation. We do not impose
any further selection in redshift to avoid discarding too many
objects from our samples, and thus maximise RSD and lensing
magnification signals.
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Redshift bin ⇤CDM wCDM
Particles (⇥106) Haloes (⇥106) Particles (⇥106) Haloes (⇥106)

0.7 < z < 1.0 7.2 1.9 7.3 2.2
1.0 < z < 1.3 9.6 2.2 9.7 2.5
1.3 < z < 1.6 11.3 2.2 11.3 2.4

1.6 < z < 1.95 14.5 2.1 14.2 2.4

Table 2. Number of objects in the di↵erent cases as a function of the redshift bin, type of selection, cosmology, and source type (particles or
haloes). An hyphen is used when the number of elements is the same as in the above line.

the smaller sample (by randomly discarding a fraction), that is
s = 1.2. Otherwise, the sample sizes would have been extremely
large to compute the correlation function which would have led
to a very computationally expensive analysis. Furthermore, be-
cause sometimes the number of elements can be very low (for
example for haloes at s = 1.2), we decided to generate several
realisations for a given selection. For particles, we generate 10
realisations for each configuration shown in Table 2. For haloes,
we generate 30 realisations for s = 0.2, 0.4, 0.6, 60 realisations
for s = 0.8 and 100 for s = 1.0, 1.2. For unlensed and s = 0
haloes we only have a single realisation since we already take all
the elements available and do not proceed to any further selec-
tion.

3.2.1. Anisotropic two-point correlation function

The estimation of three-dimensional clustering necessitates the
assumption of a fiducial cosmology to convert angular positions
and redshifts to comoving separations. In the present study, we
assume as fiducial cosmology the ⇤CDM cosmology of Ray-
Gal (Table 1), which we use to analyse all the samples in Ta-
ble 2 including those extracted from the wCDM light-cone. The
anisotropic correlation function is estimated with the Landy-
Szalay estimator (Landy & Szalay 1993) as

⇠LS(r, ⌫) =
DD(r, ⌫) � 2DR(r, ⌫) + RR(r, ⌫)

RR(r, ⌫)
, (27)

where DD, DR, and RR stand for data-data, data-random, and
random-random pairs (weighted and normalised by the total
number of elements), respectively. We use Corrfunc (Sinha &
Garrison 2020) to count the anisotropic number of pairs in bins
of comoving separation r and angle ⌫. The random samples con-
tain 50 (20) times more objects than haloes (particles). We assign
redshifts in the random catalogues using the shu✏ing method,
which consists in randomly picking redshifts from the data cat-
alogue. Eventually, the multipole moments of the correlation
function are obtained from

⇠`(r) = (2` + 1)
⌫=1X

⌫=0

⇠(r, ⌫)L`(⌫)�⌫. (28)

We are only interested in the first non-vanishing multipole mo-
ments of the correlation function: the monopole (` = 0), the
quadrupole (` = 2), and the hexadecapole (` = 4). In the cases
where we generated several realisations of the same sample, we
take the average of the multipole moments of the correlation
function. In the present work, we consider the range 27.5 to
132.5 h

�1Mpc with bins of 5 h
�1Mpc, and 200 bins in ⌫.

3.2.2. Covariances

The covariance matrices on single multipole correlation function
measurements are estimated analytically assuming Gaussianity

as described in Grieb et al. (2016). Particularly, the covariance
matrix between correlation function multipoles `1 and `2, and
between scales r1 and r2, is

C`1,`2 (r1, r2) =
i
`1+`2

2⇡2

Z
1

0
k

2�2
`1,`2

(k) j̄`1 (kr1) j̄`2 (kr2)dk, (29)

where j̄` are the bin-averaged spherical Bessel functions and
�2
`1,`2

are the per-mode covariance multipole moments, both
given in Grieb et al. (2016). The latter function is an integral
over the anisotropic power spectrum, which is set here to the
corresponding best-fitting RSD model to measurements.

3.2.3. Likelihood analysis

We perform a likelihood analysis of the measured monopole,
quadrupole, and hexadecapole correlation functions in each sam-
ple. The likelihood L is defined as

�2 lnL(#) =
NpX

i, j

�i(#)C�1
i j
� j(#), (30)

where # is the vector of parameters, � is the data-model dif-
ference vector, Np is the total number of data points, and C is
the covariance matrix. The model that we use has 6 free parame-
ters: # = { f , b1, b2,�2

v
,↵k,↵?}, which correspond respectively to

the structure growth rate, the first and second-order Lagrangian
bias parameters, the squared velocity dispersion, and the two di-
lation parameters that accounts for AP MA: définir distortions.
We note that we vary f and not directly f�8 because the model
takes as input the linear power spectrum associated to the⇤CDM
simulation at the redshift of interest. We therefore need to use a
fiducial value of �8 to compute the theoretical prediction. The
main reason why we cannot let f�8 free is because the value of
�8 is degenerate with the growth factor D+(z). Within linear the-
ory this is not a problem as �8 can factor out. But within CLPT
we cannot because the non-linear part of the power spectrum is
redshift-dependent. In any case, although we let f free in the
likelihood analysis, we eventually extract f�8 and compare it to
the fiducial value.

We use the dilation parameters along the parallel and trans-
verse direction to account for any change in cosmology with
respect to the fiducial one. Formally, these two parameters en-
ter in our formalism as a multiplicative factor on the scales in
the anisotropic correlation function: ⇠(↵?r?,↵krk). If the fiducial
cosmology is that of the data, we expect (↵?,↵k) = (1, 1). Oth-
erwise, these are given by the ratio

↵? =
DM(z)/rd

D
fid
M

(z)/rfid
d

, (31)

↵k =
DH(z)/rd

D
fid
H

(z)/rfid
d

, (32)
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Fig. 3. Normalised redshift distribution of the DM particles and haloes,
in blue and orange histograms respectively, within the narrow cone
of the ⇤CDM RayGal simulation. The blue, red, green and yellow
regions refers to the redshift bins used in the present work, that is
z = [0.7, 1.0], [1.0, 1.3], [1.3, 1.6] and [1.6, 1.95].

3.1.2. Magnification bias implementation

To reproduce di↵erent levels of magnification bias, one possibil-
ity would be to impose a halo mass-luminosity relation and esti-
mate apparent magnified fluxes or magnitudes, on which one can
make selections. While it is clearly the appropriate methodology
when constructing most realistic mock catalogues, our goal is
to investigate the e↵ect of magnification bias on galaxy clus-
tering in a general way, independently of the properties of any
target sample. Hence, we found that the easiest and most e�-
cient way to mimic the e↵ect of magnification bias is to directly
use the magnification of sources. One possibility is to select ob-
jects using a probability function proportional to µ2.5s (see also
Sect. 2.2.1). The advantages of this approach is that it discards
less sources and does not depend on the mass resolution of the
simulation. However it depends on some given normalisation
and discards more sources for higher values of s. This is why
instead we choose to add a weight for each source equal to µ2.5.
This allows to account for the e↵ect of lensing magnification
while keeping all the objects in our sample.

We note that in our theoretical modelling of magnification
bias we assumed the weak-lensing limit, meaning that the con-
vergence and magnification are small. As such, we used Eq. (18)
instead of the exact Eq. (17) for the lensed number count. Fig. 4
shows the impact of this approximation on the averaged conver-
gence, as a function of redshift. We first notice that the mean
convergence in the unlensed case (that is, s = 0.4) is very close
to zero, demonstrating the validity of our method to implement
the e↵ect of lensing magnification. For s = 0.2, we see that the
di↵erence between the exact and approximate solution is very
small. For larger values, we can clearly see that this discrepancy
grows. The di↵erence between the exact and weak-lensing so-
lutions increases with s, so that for s = 1.2 it reaches ⇠40% at
z = 1.9. One might wonder if this is something to worry about,
and how this a↵ects the correlation function, since analytical pre-
scriptions only work in the weak-lensing limit. Indeed, we do
see a di↵erence on the monopole of the correlation function in
Fig. A.1 for s = 1.2. Hopefully, this di↵erence does not seem
to a↵ect the quadrupole. This suggests that one should be care-
ful about using the first-order lensing correction using the weak-

Fig. 4. Mean convergence as a function of redshift. The solid and dashed
lines refer to the use of weights from the exact and approximate solu-
tions respectively. In any case, we perform the calculation of the con-
vergence using the ⇤CDM catalogue. The dark blue, blue, cyan, green,
orange and brown lines refer to the mean magnified convergence esti-
mated from an unlensed sample, with a factor s = 0.2, 0.4, 0.6, 0.8, 1.0
and 1.2 respectively.

lensing limit, as its validity depends on the redshift of the sample
and its value of s.

Finally, we point out that to account for e↵ect of lensing
magnification we used a weight equal to µ2.5, on top of the ob-
served angular positions for galaxy clustering analysis. This is
because our ray-tracing library computes the distortion matrix
along the null geodesic that connects the observer to each source.
In this case, the weak-lensing statistics from our sample are not
the same as if we used the Born approximation. Indeed, our
averaging procedure performs a ‘source averaging’ (Kibble &
Lieu 2005; Bonvin et al. 2015; Kaiser & Peacock 2016; Breton
& Fleury 2020). On average, light rays to sources propagate in
under-dense regions due to their path on the real null geodesics,
which leads to a negative mean convergence. Had we used the
Born approximation instead, our full sample would have been
‘unlensed’ and would have led to a vanishing mean convergence.
In this case, to implement the e↵ect of magnification on the mock
catalogue one should rather use the comoving angular positions
and add a weight equal to µ2.5s�1 to each source.

3.2. Cosmological analysis

We now turn to the galaxy clustering analysis of the di↵erent
samples described in Sect. 3.1. The total number of elements
in all of the studied cases are summarised in Table 2. Although
RayGal simulations provide a full redshift decomposition at first
order in metric perturbations, in the present paper we only focus
on the impact of lensing magnification beyond RSD and there-
fore ignore the more subtle e↵ects that could a↵ect the redshift.
This means that in any case, we only perturb the redshift with the
Doppler e↵ect induced by peculiar velocities. The unlensed case
is when we take the comoving angles, while s = 0 is when we
take observed angles. In both cases, there is no further selection,
which is why the number of elements in Table 2 is the same (mi-
nus tiny di↵erences due to the footprint). We see that the num-
ber of halos decreases for higher values of s, which is due to the
probability function in ?? used to implement the magnification
bias e↵ect. For particles, we see that for a given redshift bin we
have exactly the same number of objects in any configuration.
This is because we imposed the number of elements to be that of
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Simulation

Newtonian N-body simulations of interacting dark matter particles

Code : RAMSES (Teyssier 2002)
PM - AMR method
Gravity lightcone
Raygal simulations :
40963 particles, 2.625 Gpc/h box size
Mpart = 1.9 ◊ 1010

M§
Lightcone halo detection : pFoF (Roy et al,
2014)
Initial conditions : mpgrafic (Prunet+08)
Calibrated on WMAP7
2 cosmologies :
�CDM ≠wCDM
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Magnification correction

• Linear is good enough
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Fig. A.1. Absolute di↵erence on the correlation function multipoles
for DM particles at the highest redshift bin (that is, z = 1.6 � 1.95),
when accounting for magnification bias, with respect to the case where
we have RSD only. The red and green (purple and blue) points refer
to the monopole and quadrupole in ⇤CDM (wCDM), while the red,
green and black lines show the ⇤CDM theoretical prediction for the
monopole, quadrupole and hexadecapole computed with Coffe. Only
for the ⇤CDM case we show the hexadecapole, as the results for the
wCDM model are very similar and in any do not impact much the like-
lihood analysis.

Appendix A: Magnification bias modelling on the

correlation function multipoles

In this appendix we focus in more detail on the e↵ect of magni-
fication bias on the multipoles of the correlation function. To do
so, we consider the highest redshift bin (so as to maximise the
lensing signal) with DM particles (to reduce the noise). The re-
sults on the absolute di↵erence on the monopole and quadrupole
of the correlation function due to the e↵ect of magnification are
shown in Fig. A.1. First, we notice that in any case, that is for
s = 0 or 1.2, ` = 0 or 2, and ⇤CDM or wCDM, the lensing con-
tribution to the correlation function is positive. It is interesting
since it explains why if lensing magnification is not incorporated
in the model, the likelihood analysis will try to compensate by
increasing the value of the bias parameter and therefore lower
the value of the growth rate (as seen in Sect. 4).

Second, for the case with s = 0, that is when we use observed
angles instead of comoving ones, the monopole seem to agree
with the theoretical prediction up to 60 h

�1Mpc only. This is
surprising as we would expect on the contrary a good agreement
at large scales. This di↵erence might be due to the large variance
inherent to these scales or an inaccuracy in the modelling as well
as the non-linearity of lensing corrections (see also Hui et al.

2007 for a discussion). We also note the remarkable agreement
between data and prediction for the quadrupole.

Third, focusing on the case with s = 1.2 which give the most
significant trend, we see that the e↵ect of magnification bias is
still well modelled for the quadrupole. For the monopole, how-
ever, it seems that there is a factor two between data and pre-
diction at all scales. This comes from the fact that we use the
weak-lensing limit for the theoretical prediction. Indeed, when
we apply the weights from the weak-lensing limit solution, we
see that the monopole agrees well with the theoretical prediction.
As shown in Fig. 4, the exact perturbation to the number counts
due to magnification bias gives a stronger signal than that of its
approximate solution. This discrepancy grows with redshift and
s, and might need to be modelled for future surveys.

Last, we see that in any case the theoretical prediction in
the fiducial ⇤CDM model does not agree very well with the
data from the wCDM simulation. Although the shape is simi-
lar between data points and analytical prediction, the amplitude
is di↵erent (this di↵erence is clear for the monopole, where data
points are consistently at least a factor two above the predic-
tion for s = 1.2). This adds another source of discrepancy with
respect to the theoretical prediction, on top of that due to the
weak-lensing limit. For more precise studies at higher redshift
it will be important to find a way to account for these discrep-
ancies. Nonetheless, even if the present modelling in the fidu-
cial ⇤CDM cosmology is not perfect to analyse the wCDM and
⇤CDM simulations for high values of s, it is still much better
than not accounting at all for lensing magnification.
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Fig. 6. Same as Fig. 5 but for wCDM.

Fig. 7. Qualitatively, the results are very similar to that of Fig. 5,
that is we see that for the bin z = 0.7�1.0 the values of the growth
rate are underestimated, and for higher redshift bins we see that
a standard analysis underestimates the value of f�8 when lens-
ing is not accounted for in the modelling. The main di↵erence
between DM particles and haloes, is that for the latter we do not
clearly see the e↵ect of lensing for the bin z = 1.3 � 1.6, and
for the highest redshift bin the relative di↵erence on the best-fit
values for s = 1.2 is roughly X% with respect to the unmagni-

fied case. While it is still large, it does not reach the X% of the
particles case.

Very similarly for the wCDM cosmology in Fig. 8, where is
galaxy bias is similar to that of ⇤CDM, we find for the high-
est redshift bin a discrepancy of X% and X% for s = 1.0, 1.2
with respect to the unmagnified case. As for particles, the e↵ect
of lensing seem higher on the wCDM model than for ⇤CDM,
however it does not reach the X% di↵erence for s = 1.2 with
particles.

Article number, page 10 of 15



Impact on fsigma8

• Still, degeneracies between
parameters

Michel-Andrès Breton et al.: Impact of lensing magnification on RSD

Fig. 9. Posterior distributions for the parameters of our model, for the ⇤CDM particles sample with s = 1.2 at z = 1.6 � 1.95.

the contrary, when s is free we see that we underestimate b1 (and
therefore overestimate f ). This comes from the fact that our anal-
ysis tends to prefer higher values of s, roughly 1.4 instead of 1.2
in the present case, and since the lensing e↵ect is overestimated
it leads to a diminution of the galaxy bias (and therefore higher
values of f ). While the fact that RSD-only analysis leads to an
overestimation of b1 and diminution of f could have been in-
tuited, the fact that likelihood analysis prefer to increase s to
reduce b1 is surprising, as it leads to a biased estimation of the
growth rate. This explains the results in Sect. 4.1 regarding the
overall high values of f�8, and means that clearly, one should
avoid to let s free in the analysis.

Finally, we see that only keeping s fixed allow us to accu-
rately recover the input cosmology, that is (↵?,↵ k) = (1, 1). The

other two cases (with RSD only or s free) do not agree with the
fiducial model at the 66% confidence level. This means that they
tend to prefer other cosmological models, which might further
impact the estimation of the dilation-corrected �8 (as described
in Sect. 3.2.3).

It is worth mentioning the case of the second-order La-
grangian bias b2 whose fiducial value is only accurately recov-
ered with the case with s fixed, while the inferred values of the
velocity dispersion parameter �2

v
are slightly di↵erent depending

on which king of analysis is performed. Nonetheless, these two
parameter are mostly considered as nuisance parameters over
which we marginalise.
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