Lastest observational developments on dark energy

Sylvain de la Torre

IPhU – Class meeting

LAM - 23/09/2021

Lastest metho observational developments on dark energy

Sylvain de la Torre IPhU – Class meeting LAM – 23/09/2021

Outline

- Angular systematics-free two-point statistics in 3D
 - R. Paviot et al. (to be submitted)
- Impact of magnification bias on 3D clustering observable
 - M.-A. Breton & de la Torre (ongoing work)

Angular modes-free redshift-space clustering

• Classical estimator for the two-point correlation function (LS93):

$$\xi(\mathbf{s}) = \frac{DD(\mathbf{s}) - 2DR(\mathbf{s}) + RR(\mathbf{s})}{RR(\mathbf{s})}$$
(Durden 2017): Survey selection function

• AMF estimator (Burden 2017):

$$\tilde{\xi}(\mathbf{s}) = \frac{DD(\mathbf{s}) - 2DS(\mathbf{s}) + SS(\mathbf{s})}{RR(\mathbf{s})}$$

→ Use of auxiliary random catalogue S with exact same angular clustering as data

AMF overdensity field

• AMF overdensity:

• AMF two-point correlation function:

$$\tilde{\xi}(\mathbf{s}) \equiv \langle \tilde{\delta}(\mathbf{r}) \tilde{\delta}(\mathbf{r}') \rangle = \langle \delta(\mathbf{r}) \delta(\mathbf{r}') \rangle - 2 \left\langle \delta(\mathbf{r}) \hat{\delta}(\gamma') \right\rangle + \left\langle \hat{\delta}(\gamma) \hat{\delta}(\gamma') \right\rangle$$

Modelling

- AMF windowed overdensity: $F(\mathbf{r}) = P(\mathbf{r})\delta(\mathbf{r}) P(\mathbf{r})\int dr' \bar{n}(r')\delta(\mathbf{r'})$
- AMF two-point correlation function: $\hat{\xi}$

$$\tilde{\xi}(\mathbf{s}) \equiv \frac{\int d^3r F(\mathbf{r})F(\mathbf{r}+\mathbf{s})}{\int d^3r P(\mathbf{r})P(\mathbf{r}+\mathbf{s})}$$

$$C(\mathbf{s}) = \int d^{3}r P(\mathbf{r})P(\mathbf{r}+\mathbf{s}) \left[\int dr' \bar{n}(r')\xi(\mathbf{r'}-\mathbf{r}) \right]$$

$$+ \int dr'' \bar{n}(r'')\xi(\mathbf{r''}-\mathbf{r}-\mathbf{s}) ,$$

$$A(\mathbf{s}) = \int d^{3}r P(\mathbf{r})P(\mathbf{r}+\mathbf{s}) \int dr'' \bar{n}(r'') \int dr' \bar{n}(r')\xi(\mathbf{r'}-\mathbf{r''}),$$

$$(24)$$

$$W(\mathbf{s}) = \int d^3 r P(\mathbf{r}) P(\mathbf{r} + \mathbf{s}).$$
(25)

Sensitivity to angular contaminants

- Let's consider a contamination field c(r):
 - No contamination: $F(\mathbf{r}) = P(\mathbf{r})\delta(\mathbf{r}) P(\mathbf{r})\int d\mathbf{r}' \bar{n}(\mathbf{r}')\delta(\mathbf{r}')$

• (Additive) contamination:

$$F(\mathbf{r}) = P(\mathbf{r}) \left(\delta(\mathbf{r}) + c(\mathbf{r}) - P(\mathbf{r}) \int dr' \bar{n}(r') \left(\delta(\mathbf{r}') + c(\mathbf{r}') \right)$$

$$= P(\mathbf{r})\delta(\mathbf{r}) - P(\mathbf{r})\int dr' \bar{n}(r')\delta(\mathbf{r'}).$$

Test on simulations

- Work within eBOSS/SDSS-4 collaboration
- Use of LRG (BOSS) 64 mocks and ELG EZmocks

AMF correlation function

Redshift-space full-shape fit

- No significant bias wrt standard approach
- Increase of about 30% on fsigma_8 and alpha_parallel (function of *H(z)*)

BAO-only fit

- Constraints are similar
- No significant bias wrt standard approach
- Increase of 20% on alpha_parallel (function of H(z))

Final constraints

• Details cosmological constraints:

Method	$lpha_{ot}$	$lpha_\parallel$	$f\sigma_8$	$f\sigma_{8 m rs}$
CMASS				
RSD M+Q+H standard RSD M+Q+H AMF BAO standard BAO AMF	$\begin{array}{c} 0.9972 \pm (0.0019/0.017) \\ 0.9962 \pm 0.0023 \\ 1.0056 \pm 0.0022 \\ 1.0043 \pm 0.0026 \end{array}$	$\begin{array}{c} 1.0032 \pm (0.0032/0.029) \\ 0.9987 \pm 0.0038 \\ 1.0007 \pm 0.0044 \\ 1.0011 \pm 0.0046 \end{array}$	$\begin{array}{c} 0.4700 \pm (0.0044/0.04) \\ 0.4686 \pm 0.0067 \end{array}$	0.4694 ± 0.0044 0.4696 ± 0.0067
ELG				
RSD M+Q standard RSD M+Q AMF BAO standard BAO AMF	$\begin{array}{c} 1.0014 \pm (0.0043/0.096) \\ 1.0008 \pm 0.0049 \\ 1.0023 \pm 0.0043 \\ 1.0009 \pm 0.0051 \end{array}$	$\begin{array}{c} 1.0056 \pm (0.0066/0.147) \\ 1.0092 \pm 0.0067 \\ 1.0063 \pm 0.0062 \\ 1.0171 \pm 0.0066 \end{array}$	$\begin{array}{c} 0.4570 \pm (0.0053/0.118) \\ 0.4586 \pm 0.0065 \end{array}$	0.4550 ± 0.0053 0.4566 ± 0.0065

- AMF is less constraining but free from any angular systematics
- Very useful for DESI and Euclid, particularly for testing residual angular systematics in the standard approach

Impact of lensing magnification on 3D redshift-space clustering

Magnification bias

- Magnification bias: flux and size of objects are magnified and any galaxy selection will be affected by that
- Modification of the observed number of sources
- Conservation of surface brightness and counts:

 $S'(\boldsymbol{\theta}) = \mu(\boldsymbol{\theta})S(\boldsymbol{\theta}),$ $d\Omega'(\boldsymbol{\theta}) = \mu(\boldsymbol{\theta})d\Omega(\boldsymbol{\theta}),$

 $n'(m')\mathrm{d}m'\mathrm{d}\Omega' = n(m)\mathrm{d}m\mathrm{d}\Omega$

Assumption: $n(< m) \propto 10^{ms}$

$$\Delta_{\text{len}} = \mu^{2.5s-1} - 1$$

= $(5s - 2)\kappa$,

Magnification

Magnification bias

Linear theory for magnification bias

• Linear theory in 2PCF:

$$\Delta = \Delta_{\rm den} + \Delta_{\rm rsd} + \Delta_{\rm len}$$

$$\xi_{\text{corr}}(\boldsymbol{r}) = \xi_{\text{den-len}}(\boldsymbol{r}) + \xi_{\text{rsd-len}}(\boldsymbol{r}) + \xi_{\text{len-len}}(\boldsymbol{r}),$$

$$\xi_{\text{A-B}}(\theta, z_1, z_2) = \int \frac{\mathrm{d}k}{k} P_{\text{R}}(k) Q_k^{\text{A-B}}(\theta, z_1, z_2),$$

$$Q_{k}^{\text{den-len}}(\theta, z_{1}, z_{2}) = b(z_{1})S_{D}(z_{1})\left(\frac{2-5s}{2\chi_{2}}\right)$$

$$\int_{0}^{\chi_{2}} d\lambda \frac{\chi_{2}-\lambda}{\lambda} S_{\phi+\psi}(\lambda) \zeta^{0L}(k\chi_{1}, k\lambda, \theta),$$

$$Q_{k}^{\text{rsd-len}}(\theta, z_{1}, z_{2}) = \frac{k}{\mathcal{H}(z_{1})} S_{V}(z_{1})\left(\frac{2-5s}{2\chi_{2}}\right)$$

$$\int_{0}^{\chi_{2}} d\lambda \frac{\chi_{2}-\lambda}{\lambda} S_{\phi+\psi}(\lambda) \zeta^{2L}(k\chi_{1}, k\lambda, \theta),$$

$$Q_{k}^{\text{len-len}}(\theta, z_{1}, z_{2}) = \frac{(2-5s)^{2}}{4\chi_{1}\chi_{2}}$$

$$\int_{0}^{\chi_{1}} \int_{0}^{\chi_{2}} d\lambda d\lambda' \frac{(\chi_{1}-\lambda)(\chi_{2}-\lambda')}{\lambda\lambda'} S_{\phi+\psi}(\lambda)$$

$$S_{\phi+\psi}(\lambda')\zeta^{LL}(k\lambda, k\lambda', \theta).$$

Impact of magnification: theory

• Impact in the worst case (s=1.2 and z=2) mostly on large scales in monopole and hexadecapole

• Flat-sky approximation good enough in principle

 $\xi_{\text{model}}(r_{\perp}, r_{\parallel}) = \xi_{\text{CLPT-GS}}(r_{\perp}, r_{\parallel}) + \xi_{\text{corr}}(r_{\perp}, r_{\parallel})$

Raygal simulation

Redshift bin	АСDМ		wCDM	
	Particles ($\times 10^6$)	Haloes $(\times 10^6)$	Particles ($\times 10^6$)	Haloes $(\times 10^6)$
0.7 < z < 1.0	7.2	1.9	7.3	2.2
1.0 < z < 1.3	9.6	2.2	9.7	2.5
1.3 < z < 1.6	11.3	2.2	11.3	2.4
1.6 < z < 1.95	14.5	2.1	14.2	2.4

Magnification correction

• Linear is good enough

Impact on fsigma8

- Important to account for magnification (in worst case)
- Free s is not a solution in fits

Impact on fsigma8

• Still, degeneracies between parameters

