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Development of automatic classification is crucial for
upcoming surverys characterized by huge amount of

astronomical data. In order not to get lost in the zoo of
petabytes of data, we need to develop intelligent machine

learning algorithms to classify different types of astronomical
sources, preferably in the multi-dimensional parameter spaces
to preselect sources for more sophisticated scientific analysis.
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The era of Big Data

The information volume and rates grow exponentially.

A great increase in the data information content.

A great increase in the information complexity.
→ There are patterns in the data that cannot be comprehended by
humans directly.

The bottleneck will not be
data availability but our ability
to extract useful and reliable

information from data.

→ Explore all possible combinations of
the relevant parameters
(multi-dimensional space).
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Types of machine learning

Supervised machine learning with training sample −→
recreating known patterns

Neural networks
Bayesian networks
Support vector machine - SVM
...

Unsupervised learning - no training sample −→ developing
new classes

Kmeans
Expectation Maximization
FisherEM
...
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The VIMOS Public
Extragalactic Redshift Survey
(VIPERS) - spectro

ESO Large Programme
aimed at measuring
spectroscopic redshifts for
∼ 105 galaxies and covering
in total ∼ 24deg2 on the
sky,

redshift range 0.5 < z < 1.2,

the galaxy target sample
selected from optical
photometric catalogs
CFHTLS to the limit of iAB
< 22.5

WISE - photo

Satellite survey of the sky at
near-infrared (wavelengths
W1 - 3.4, W2 - 4.6, W3 - 12
and W4 - 22 µm),

Objects detected by WISE ?
stars, galaxies, quasars,
asteroids, comets,
protoplanetary disks..

Over 700 millions objects,

additional cuts:

|b| > 10 - galaxy latitude,
W1 < 17 mag,
⇒ 100 million sources,
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SUPERVISED
(based on VIPERS and

WISExSCOS)
mostly for standard classification

KM et al., 2013,
Krakowski, KM et al, 2016

Solarz et al, 2017
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VIPERS

KM, et al., 2013, A&A
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WISE

WISExSDSS DR10 ∼ 1 700 000 objects

Krakowski, KM, et al., 2016, A&A
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SVM - the main concept

to calculate decision planes between a set of objects having
different class memberships, which are defined by the
Training Sample ⇒ quantities that describe the
properties of each class of objects,

SVM searches for the optimal separating hyperplane between
the different classes of objects by maximizing the margin
between the classes’ closest points,

the objects are classified based on their relative position in the
N-dimensional parameter space to the separation boundary.
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SVM

to search for a hyperplane, SVM uses kernel function2, and

a soft-boundary SVM method called C-SVM:

C - trade-off parameter between large margin of different
classes of objects and mis-classifications.
γ parameter determines the topology of the decision surface.

Both parameters, C and γ, need to be tuned based on the
Training Sample.

———————–
2 Gaussian radial basis kernel (RBK) function for this work.
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SVM: practical point of view

1 manually classify the
Training Sample,

2 for each object in this
subset define a feature
vector,

3 Train algorithm and
optimize C and γ.
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RESULTS I
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VIPERS Galaxy-AGN-Star classifier (KM et al., 2013)

5D classifier based on u,g,r,i,z (CFHTLS), and Ks (WIRcam)
measurements,

Training Sample - galaxies, stars and broad line active galactic
nuclei (BLAGNs) with high quality VIPERS spec
measurements (confidence level >75%)

The simplest classification, based only on 2D color-color space,
would be practically impossible.

SVM classifier trained in 5D space and based on the
broad-band photometry gives classification accuracy: 94%
for galaxies, 93% for stars, and 82% for AGNs.
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WISExSuperCOSMOS catalog (170 milion of sources),
Galaxy-AGN-Star classifier (Krakowski, KM, et al., 2016)

Training Sample: WISExSuperCOSMOSxSDSS catalog of galaxies,
stars, and quasars with spectroscopic classification (1.3 milion of
sources),

By using the support vector machines algorithm, trained and
tested on a cross-match of spectroscopic SDSS data with
WISE×SCOS, we identified about 15 million galaxy
candidates over 70% of sky
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is it possible to find outliers with SVMs?

An application of one-class SVM (OCSVM) to search for
anomalous patterns among sources preselected from the
mid-infrared AllWISE catalogue. Training Sample: spectroscopic
identifications from the SDSS DR13, present also in AllWISE. The
OCSVM method detects those sources whose patterns - WISE
photometric measurements in this case - are inconsistent with the
model.

Solarz, A et al, 2017
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is it possible to find outliers with SVMs?

Unlike the traditional SVM algorithm, which is designed to
differentiate between classes contained within a given set, hereafter
OCSVM recognizes patterns in a much larger space of classes,
unseen in training but which occur in testing.

Solarz, A et al, 2017

Kasia Galaxy classification 17/ 39



Motivation DATA SUPERVISED UNSUPERVISED RESULTS II Summary

UNSUPERVISED
(based on VIPERS)

Unsupervised learning algorithms are used to divide the data of a
priori unknown properties into clusters

results from Siudek, KM, et al., 2018
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Traditional way to separate galaxy types at mid − z

Fritz, et al., 2014.
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Traditional way to separate galaxy types at mid − z

Davidzon, et al., 2016.
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FisherEM

This algorithm is based on the expectation - maximization (EM)
algorithm from which an additional step is introduced.

1 E step in which posterior probabilities that observations
belong to the K groups are computed,

2 F step which estimates the orientation matrix U of the
discriminative latent space conditionally to the conditional
probabilities,

3 M step in which parameters of the mixture model are
estimated in the latent subspace by maximizing the
conditional expectation of the complete likelihood.

Software: python library FisherEM and R (T. Krakowski is
rewriting the code to C language)
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the same but more detailed :-)

step I : assigning initial model parameters. These will then be
iteratively changed by assigning either (1) random values, or
(2) pre-defined values obtained from another simpler and
faster clustering algorithm.

a random procedure for assigning initial values of function
parameters repeated several times −→ the model with the
highest log-likelihood is selected (our case: k-means++),
a random choice of cluster centres among the data points is
made and based on repetitions and a weighted probability, it
selects new centres.

=⇒ In this step, the first guess about possible number and
location of the groups in the parameter space is made.
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the same but more detailed :-)

step II : Once the starting point of the algorithm has been
selected, the FEM algorithm is executed assuming that:

that the input parameters: magnitudes and redshift values can
be projected in a latent discriminative subspace with a
dimension lower than the dimension (K) of the observed data,
and
this subspace (K-1) is sufficient to discriminate K classes

=⇒ Then the algorithm performs E (expectation), F (Fisher
criterion), M (maximization) steps described below that are
repeated in each cycle.
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the same but more detailed :-)

step III : FEM algorithm:

E: the calculation of the probability for each considered object
of belonging to the groups predefined by k-means++,
F: the DLM1 model chooses the subspace f in which the
distances between groups are maximized and their scatter is
minimized:

f =
(η1 − η2)2

σ2
1 + σ2

2

, (1)

where η1 and η2 are the mean values of the centres of the
analysed groups, and σ2

1 and σ2
2 are their variances

M: the parameters of the multivariate Gaussian functions are
optimised, by maximising the conditional expectations of the
complete log-likelihood, based on the values obtained in the
previous steps (E+F).
come back to E to compute the probabilities for each object to
belong to groups modified in the last step M.

1discriminant latent mixture
Kasia Galaxy classification 24/ 39



Motivation DATA SUPERVISED UNSUPERVISED RESULTS II Summary

the same but more detailed :-)

Thus, this procedure is repeated until the algorithm converges
according to the stopping criterion which is based on the difference

between the likelihood calculated in the subsequent steps.
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Data

we have used 52 114 galaxies (good flags),

we have chosen 12 absolute magnitudes: FUV, NUV, u, g, r,
i, z, B, V, J, H, and K and spectroscopic redshifts,

we have made a normalization of parameters with respect to
the i absolute magnitude.
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then we run FEM algorithm:

something like:
fem(data,K=2:20,model=’all’)

fem(data,K=2:20,model=’all’,method=’svd’,crit=’bic’,

maxit=50,eps=1e-6,init=’kmeans’,

nstart=25,kernel=’’,disp=F)
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Validation method - BIC
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Validation method - probablility
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Validation method - flow chart
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RESULTS II
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2-D colors: not able to reveal a panoply of galaxy types
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Galaxy classification at z ∼ 0.7

12 classes are well separated in multidimensional space, following
the traditional galaxy classification scheme:

3 red passive galaxy
classes,

3 green intermediate
galaxy classes,

5 blue active galaxy
classes,

1 broad-line AGN class. z −
K
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From blue to red
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Evolution of the NUVrK diagram

M. Siudek et al. A&A, submitted, 2018.
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an example: the result with EM algorytm (no F step):
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and again with F:
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Summary

Using better galaxy classification schemes: machine learning.

The automatic unsupervised identification of groups of
objects with similar properties based on the

multi-dimensional datasets.

The evolution of galaxy properties through cosmic times
teaches us about galaxy formation and evolution.

The galaxy class evolution: how do galaxies evolve over
cosmic time.

2 different classes following the evolutionary path -
from blue star-forming to red passive galaxies,

Much more detailed picture of the evolution than the
one created by standard procedures.
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Thank you for your attention
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