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Perceptron and Multi-Class Classification

▸ Formal Neuron: limited to binary classification
▸ Multi-Class Classification: use several
output neurons instead of a single one !
⇒ Perceptron

▸ Input x in Rm

▸ Output neuron ŷ1 is a formal neuron:
▸ Linear (affine) mapping: s1 = w1

⊺x + b1
▸ Non-linear activation function: f : ŷ1 = f (s1)

▸ Linear mapping parameters:
▸ w1 = {w11, ...,wm1} ∈ Rm

▸ b1 ∈ R
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Perceptron and Multi-Class Classification

▸ Input x in Rm

▸ Output neuron ŷk is a formal neuron:
▸ Linear (affine) mapping: sk = wk

⊺x + bk
▸ Non-linear activation function: f : ŷk = f (sk)

▸ Linear mapping parameters:
▸ wk = {w1k , ...,wmk} ∈ Rm

▸ bk ∈ R
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Perceptron and Multi-Class Classification
▸ Input x in Rm (1 ×m), output ŷ : concatenation of K formal neurons
▸ Linear (affine) mapping ∼ matrix multiplication: s = xW + b

▸ W matrix of size m ×K - columns are wk
▸ b: bias vector - size 1 ×K

▸ Element-wise non-linear activation: ŷ = f (s)
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Perceptron and Multi-Class Classification

▸ Soft-max Activation:

ŷk = f (sk) =
esk

K

∑
k ′=1

esk′

▸ Probabilistic interpretation for multi-class
classification:

▸ Each output neuron ⇔ class
▸ ŷk ∼ P(k/x,w)

⇒ Logistic Regression (LR) Model !
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2d Toy Example for Multi-Class Classification
▸ x = {x1, x2} ∈ [−5;5] × [−5;5], ŷ : 3 outputs (classes)

Linear mapping
for each class:
sk = wk

⊺x + bk

w1 = [1;1], b1 = −2 w2 = [0;−1], b2 = 1 w3 = [1;−0.5], b3 = 10

Soft-max output:
P(k/x,W)
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2d Toy Example for Multi-Class Classification
▸ x = {x1, x2} ∈ [−5;5] × [−5;5], ŷ : 3 outputs (classes)

Soft-max output:
P(k/x,W)

w1 = [1;1], b1 = −2 w2 = [0;−1], b2 = 1 w3 = [1;−0.5], b3 = 10

Class Prediction:
k∗ = argmax

k
P(k/x,W)
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Beyond Linear Classification

X-OR Problem
▸ Logistic Regression (LR): NN with 1 input layer & 1 output layer
▸ LR: limited to linear decision boundaries
▸ X-OR: NOT 1 and 2 OR NOT 2 AND 1

▸ X-OR: Non linear decision function
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Beyond Linear Classification

▸ LR: limited to linear boundaries
▸ Solution: add a layer !

▸ Input x in Rm, e.g. m = 4
▸ Output ŷ in RK (K # classes), e.g. K = 2
▸ Hidden layer h in RL
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Multi-Layer Perceptron
▸ Hidden layer h: x projection to a new
space RL

▸ Neural Net with ≥ 1 hidden layer:
Multi-Layer Perceptron (MLP)

▸ h: intermediate representations of x for
classification ŷ: h = f (xW + b)

▸ Mapping from x to ŷ: non-linear
boundary ! ⇒ activation f crucial!
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Deep Neural Networks
▸ Adding more hidden layers: Deep Neural Networks (DNN)
▸ Each layer hl projects layer hl−1 into a new space
▸ Gradually learning intermediate representations useful for the task
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Conclusion
▸ Deep Neural Networks: applicable to classification
problems with non-linear decision boundaries

▸ Visualize prediction from fixed model parameters
▸ Reverse problem: Supervised Learning ⇒ following!
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