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Neural Network Training: Optimization Issues

» Classification loss over training set (vectorized w, b ignored):
Lce(w) = ZKCE ¥i ¥;) ——Z/Og(yc j

» Gradient descent optimization:
aECE(
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» Gradient V) = % Z M (w(®) linearly scales wrt:

» w dimension
» Training set size

w(tJrl) — w(t) — W(t)) — W(t) — /,/’V‘(Nt)

= Too slow even for moderate
dimensionality & dataset size!
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Stochastic Gradient Descent
» Solution: approximate v’ = % Z ‘%CE(y’ YD) (w(®)) with subset of examples

= Stochastic Gradient Descent (SGD)
» Use a single example (online):

) , Ice(¥iy)) (w®)
v ow
» Mini-batch: use B < N examples:

v(t) B z agCE(yHy ) ( (t))
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Full gradient SGD (online)  SGD (mini-batch)
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Stochastic Gradient Descent

» SGD: approximation of the true Gradient v, !

» Noisy gradient can lead to bad direction, increase loss

» BUT: much more parameter updates: online x N, mini-batch x%

» Faster convergence, at the core of Deep Learning for large
scale datasets

Full gradient SGD (online)  SGD (mini-batch)
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Optimization: Learning Rate Decay

» Gradient descent optimization: w(t*1) = w(®) — v
» 1 setup 7 = open question
» Learning Rate Decay: decrease 1 during training

progress
» Inverse (time-based) decay: n; = $2-, r decay rate
» Exponential decay: n; =19 - e
t

» Step Decay ny =mo - rt ...

—— learning rate
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Exponential Decay (=01, x-01 Step Decay (ro=01,r-05, 1,-10)
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Generalization and Overfitting

» Learning: minimizing classification loss Lcg over training set
» Training set: sample representing data vs labels distributions
» Ultimate goal: train a prediction function with low prediction
error on the true (unknown) data distribution
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= Optimization # Machine Learning!
= Generalization / Overfitting!
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Regularization

» Regularization: improving generalization, i.e. test (# train) performances

v

Structural regularization: add Prior R(w) in training objective:
L(w) =Lce(w) +aR(w)

» L? regularization: weight decay, R(w) = ||w|[?
» Commonly used in neural networks
» Theoretical justifications, generalization bounds (SVM)

v

Other possible R(w): L! regularization, dropout, etc

6/ 9 N. Thome - Training Issues



L2 regularization: interpretation

» "Smooth" interpretation of L? regularization, Cauchy-Schwarz:

{w, (x =x)) < [Jw|[*|lx - x|
» Controlling L2 norm |jwl|?: "small" variation between inputs x and x’
= small variation in neuron prediction (w,x) and (w,x’)
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= Supports simple, i.e. smoothly varying
prediction models
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Regularization and hyper-parameters

» Neural networks: hyper-parameters to tune:

» Training parameters: learning rate, weight decay,
learning rate decay, # epochs, etc

» Architectural parameters: number of layers, number
neurones, non-linearity type, etc

» Hyper-parameters tuning: = improve generalization:
estimate performances on a validation set
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Neural networks: Conclusion

» Training issues at several levels: optimization,
generalization, cross-validation

» Limits of fully connected layers and Convolutional
Neural Nets ? = following!
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