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Context: Big Data
» Superabundance of data: images, videos, audio, text, user traces, etc
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BBC: 2.4M videos Social media, 100M monitoring cameras
e.g. Facebook: 1B each day

» Obvious need to access, search, or classify these
data: Recognition
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Recognition & Big Data

» Huge number of applications: mobile visual search,

robotics, autonomous driving, augmented reality,
medical imaging etc

» Leading track in major ML/CV conferences
during the last decade
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Focus on Visual Recognition: Perceiving Visual World

» Archetype of low-level signal
» Early 80's: master class problem
» Most impacted topic by deep learning
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Focus on Visual Recognition: Perceiving Visual World

» Scene categorization: beach,
moutain, city, etc

» Object localization: people,
church, etc
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Focus on Visual Recognition: Perceiving Visual World

» Context & attribute
prediction: urban, outdoor,
sunny, open, etc
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Focus on Visual Recognition: Perceiving Visual World

» 3D layout, depth ordering:
"mountain behind city"
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Focus on Visual Recognition: Perceiving Visual World

» Captioning:
"In a very nice spring
morning, people having a walk
in the sunny beach of Cefalu"
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Recognition and classification

» Classification: data — set of pre-defined classes
» Recognition much more general than classification, e.g.

» Object Localization in images
» Sequence prediction for text, speech, audio, etc

» Many tasks can be cast as classification problems

= |Importance of classification ‘

person
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Recognition of low-level signals: filling the semantic gap

» What we perceive vs
What a computer sees
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Recognition of low-level signals: input data variations

» Illumination variations
» View-point variations
» Deformable objects

» intra-class variance
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Deep Learning (DL) & Recognition of low-level signals
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» Before DL: handcrafted intermediate representations
» © Needs expertise in each field
» © Shallow archis: low-level features

7/ 11 N. Thome - Context



Deep Learning (DL) & Recognition of low-level signals
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» DL: learning intermediate representations
» @ Deep: hierarchy, gradual learning
» @ Common learning methodology, no expertise
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Perception vs Acquisition

» Measurements - primary sensory signal: noisy

» Perception - high level representation, i.e. object class: stable

high level representation
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Deep Learning (DL) & Manifold Untangling

IS

“‘Good' neural space

Raw data: Deep Learning representations:
very tangled manifold untangled manifold

» Manifold untangling: neuroscience terminology
» Deep Learning models gradually disentangle data manifold

» Deformations linearized: simple linear classifier
in disentangled DL manifold space!
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Deep Learning Context: Conclusion

» Deep Learning: Representation Learning vs feature engineering
» Manifold untangling: stable representations

» Computational model for neural networks?
= following!
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Inputs Summation and Bias Activation Qutput
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