
Neural Networks and Deep Learning:
Training Issues

Nicolas Thome

Conservatoire National des Arts et Métiers (Cnam)
Département Informatique



Neural Network Training: Optimization Issues

▸ Classification loss over training set (vectorized w, b ignored):

LCE(w) =
1
N

N

∑
i=1
`CE(ŷi ,y∗i ) = −

1
N

N

∑
i=1

log(ŷc∗,i)

▸ Gradient descent optimization:

w(t+1) = w(t) − η
∂LCE
∂w

(w(t)) = w(t) − η∇(t)w

▸ Gradient ∇(t)w = 1
N

N

∑
i=1

∂`CE (ŷi ,y∗i )
∂w (w(t)) linearly scales wrt:

▸ w dimension
▸ Training set size

⇒ Too slow even for moderate
dimensionality & dataset size!

1/ 9 N. Thome - Training Issues



Stochastic Gradient Descent
▸ Solution: approximate ∇(t)w = 1

N

N

∑
i=1

∂`CE (ŷi ,y∗i )
∂w (w(t)) with subset of examples

⇒ Stochastic Gradient Descent (SGD)
▸ Use a single example (online):

∇
(t)
w ≈

∂`CE(ŷi ,y∗i )
∂w

(w(t))

▸ Mini-batch: use B < N examples:

∇
(t)
w ≈

1
B

B

∑
i=1

∂`CE(ŷi ,y∗i )
∂w

(w(t))

Full gradient SGD (online) SGD (mini-batch)
2/ 9 N. Thome - Training Issues



Stochastic Gradient Descent

▸ SGD: approximation of the true Gradient ∇w !
▸ Noisy gradient can lead to bad direction, increase loss
▸ BUT: much more parameter updates: online ×N, mini-batch ×N

B
▸ Faster convergence, at the core of Deep Learning for large
scale datasets

Full gradient SGD (online) SGD (mini-batch)

3/ 9 N. Thome - Training Issues



Optimization: Learning Rate Decay
▸ Gradient descent optimization: w(t+1) = w(t) − η∇(t)w
▸ η setup ? ⇒ open question
▸ Learning Rate Decay: decrease η during training
progress

▸ Inverse (time-based) decay: ηt =
η0

1+r ⋅t , r decay rate
▸ Exponential decay: ηt = η0 ⋅ e

−λt

▸ Step Decay ηt = η0 ⋅ r
t
tu ...

Exponential Decay (η0 = 0.1, λ = 0.1s) Step Decay (η0 = 0.1, r = 0.5, tu = 10)

4/ 9 N. Thome - Training Issues



Generalization and Overfitting
▸ Learning: minimizing classification loss LCE over training set

▸ Training set: sample representing data vs labels distributions
▸ Ultimate goal: train a prediction function with low prediction
error on the true (unknown) data distribution

Ltrain = 4, Ltrain = 9 Ltest = 15, Ltest = 13
⇒ Optimization ≠ Machine Learning!
⇒ Generalization / Overfitting!

5/ 9 N. Thome - Training Issues



Regularization

▸ Regularization: improving generalization, i.e. test (≠ train) performances
▸ Structural regularization: add Prior R(w) in training objective:

L(w) = LCE(w) + αR(w)

▸ L2 regularization: weight decay, R(w) = ∣∣w∣∣2
▸ Commonly used in neural networks
▸ Theoretical justifications, generalization bounds (SVM)

▸ Other possible R(w): L1 regularization, dropout, etc

6/ 9 N. Thome - Training Issues



L2 regularization: interpretation
▸ "Smooth" interpretation of L2 regularization, Cauchy-Schwarz:

⟨w, (x − x′)⟩ ≤ ∣∣w∣∣2∣∣x − x′∣∣2

▸ Controlling L2 norm ∣∣w∣∣2: "small" variation between inputs x and x′
⇒ small variation in neuron prediction ⟨w,x⟩ and ⟨w,x′⟩

⇒ Supports simple, i.e. smoothly varying
prediction models

7/ 9 N. Thome - Training Issues



Regularization and hyper-parameters
▸ Neural networks: hyper-parameters to tune:

▸ Training parameters: learning rate, weight decay,
learning rate decay, # epochs, etc

▸ Architectural parameters: number of layers, number
neurones, non-linearity type, etc

▸ Hyper-parameters tuning: ⇒ improve generalization:
estimate performances on a validation set

8/ 9 N. Thome - Training Issues



Neural networks: Conclusion
▸ Training issues at several levels: optimization,
generalization, cross-validation

▸ Limits of fully connected layers and Convolutional
Neural Nets ? ⇒ following!

9/ 9 N. Thome - Training Issues


