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INTRODUCTION

- Supervised Classification : give label to unlabelled data, learn how to label with
examples

- Unsupervised Classification or Clustering : goup similar data
Examples

- E-mail classification: spam or ham
- CME classification

- detection of groups of similar website visitors
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- k-Nearest Neighbors
- Support Vector Machine
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NON EXHAUSTIV LIST OF CLASSIFICATION METHODS

- k-Nearest Neighbors
- Support Vector Machine

- Decision Tree and Random Forest

Random Forest Simplified

Instance

Random Forest [ ~~—_

- Y “~—a
S N N
R A o 2
dodbdbdy v ds dbiy A A
Tree-1 Tree-2 Tree-n
Class-A Class-B Class-B

| Majority-Voting | |

|[Final-Class



NON EXHAUSTIV LIST OF CLASSIFICATION METHODS

- k-Nearest Neighbors
- Support Vector Machine
- Decision Tree and Random Forest

- Deep Learning (Neural networks)
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CURSE OF DIMENSIONALITY // OVERFITTING

- high dimension feature space => enormous amount of training data

- overfitting // poor generalization: neural network learn "by heart”

- Need of dimensionality reduction tools

- feature selection: selection of a subset of relevant features
- feature extraction: build derived informative and non-redondand features



DIMENTIONALITY REDUCTION




PCA

- PCA Principal Component Analysis

- main idea: find projection on the hyperplane that lies closest to the data
- preserve the maximum amount of variance

- minimize the mean square error between original datasests and projected

datasets




AUTOENCODERS

- Autoencoders (auto-associative neural network) : use to learn efficient
representation of the input data

- learn the identity: copy inputs to outputs, minimize MSE between inputs and
output

Input Hidden Qutput
layer layer layer




PCA AND AUTOENCODERS

- using tie Autoencoder, with MSE and with linear activations one can see that PCA
and Autoencoders are equivalent




PCA AND AUTOENCODER: RECONSTRUCTION

- reconstruction from 784 dimensions to 1, 2 and 10 dimensions




UNDERCOMPLETE AUTOENCODERS

Input Hidden Qutput
layer layer layer

To —

- hidden layer if smaller than input and output layers
- the network needs to learn a lossy compression of datasets
- possibility to add prior (weight regularisation)




STACKED AUTOENCODERS

- stack several hidden layers
- represention of more complex relationship for compression
- learn sequentially each hidden layer, group all layers for fine tuning

| hidden layer 3 hidden layers 5 hidden layers
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EXAMPLES IN HYPERSPECTRAL IMAGING
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HYPERSPECTRAL IMAGING

- Stack of images

- Each image = narrow wavelength range of electromagnetic spectrum

Example:

- AVARIS Sensor
- 145x145 pixels images
- 224 bands (0.4 to 2.5 % 10~° meters)

- agriculture, forest, natural vegetation
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EXAMPLE 1

Spectral-Spatial Classification of
Hyperspectral Image Using Autoencoders

Zhouhan Lin, Yushi Chen, Xing Zhao Gang Wang

Abstract—Hyperspectral image (HSI) classification is a hot topic in the remote sensing community. This
paper proposes a new framework of spectral-spatial feature extraction for HSI classification, in which
for the first time the concept of deep learning is introduced. Specifically, the model of autoencoder is
exploited in our framework to extract various kinds of features. First we verify the eligibility of
autoencoder by following classical spectral information based classification and use autoencoders with
different depth to classify hyperspectral image. Further in the proposed framework, we combine PCA
on spectral dimension and autoencoder on the other two spatial dimensions to extract spectral-spatial
information for classification. The experimental results show that this framework achieves the highest
classification accuracy among all methods, and outperforms classical classifiers such as SVM and
PCA-based SVM.

Keywords-autoencoders; deep learning; hyperspectral; image classification; neural networks; stacked
autoencoders



EXAMPLE 1: DATA

data cube:

spectrum lor classification:
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Figure 1. A typical scene of hyperspectral image. Each pixel consists of a whole spectrum.



EXAMPLE 1: AE

Reconstruction with 1,100, 1000 epochs
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EXAMPLE 1: CLASSIFICATION RESULTS

Classification results (KSC and Pavia datasets)

Error rate comparison
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EXAMPLE 2

Novel segmented stacked autoencoder for effective dimensionality
reduction and feature extraction in hyperspectral imaging

Jaime Zabalza?, Jinchang Ren **, Jiangbin Zheng °, Huimin Zhao ¢, Chunmei Qing ¢,
Zhijing Yang ¢, Peijun Du', Stephen Marshall*

ABSTRACT

Stacked autoencoders (SAEs), as part of the deep learning (DL) framework, have been recently proposed
for feature extraction in hyperspectral remote sensing. With the help of hidden nodes in deep layers, a
high-level abstraction is achieved for data reduction whilst maintaining the key information of the data.
As hidden nodes in SAEs have to deal simultaneously with hundreds of features from hypercubes as
inputs, this increases the complexity of the process and leads to limited abstraction and performance. As
such, segmented SAE (S-SAE) is proposed by confronting the original features into smaller data segments,
which are separately processed by different smaller SAEs. This has resulted in reduced complexity but
improved efficacy of data abstraction and accuracy of data classification.



EXAMPLE 2: AE
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EXAMPLE 2: RESULTS
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CONCLUSION




CONCLUSION

- Autoencoders are powerful tools to perform dimensionality reduction
- Improvements of classification results using AE

- First step towards a full non supervised classification



DEEP EMBEDDED CLUSTERING

Unsupervised Deep Embedding for Clustering Analysis

University of Washington
Ross Girshick

Facebook Al Research (FAIR)
Al Farhadi

Uaiversity of Washington
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Abstract

Clustering is central to many data-driven appli-
cation domains and has been studied extensively
in terms of distance functions and grouping al-
gorithms. Relatively little work has focused on
learning representations for clustering. In this
paper, we propose Deep Embedded Clustering
(DEC), a method that simultaneously learns fea-
ture representations and cluster assignments us-
ing deep neural networks. DEC learns a map-
ping from the data space to a lower-dimensional
feature space in which it iteratively optimizes a
clustering objective. Our experimental evalua-
tions on image and text corpora show significant
improvement over state-of-the-art methods.
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DEEP EMBEDDED CLUSTERING
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Figure 1. Network structure
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DEEP EMBEDDED CLUSTERING
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TEST ON HSI DATASETS
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