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ABSTRACT

In this paper, we implement and study a model-based reinforcement learning (MBRL) method called Policy
Optimization for Adaptive Optics (PO4AO) in numerical simulations. We use the Object-Oriented Python
Adaptive Optics (OOPAO) simulation tool to simulate the Provence Adaptive Optics Pyramid Run System
(PAPYRUS) optical bench and provide a real-time model of the system. In particular, we demonstrate the
predictive capability of the method since the temporal error dominates the error budget of PAPYRYS. We first
present a detailed description of the reinforcement learning framework, including our definition of the state space,
the action space, and the reward function. The experiment section compares PO4AO to a well-tuned integrator in
different atmospheric conditions. In conclusion, we discuss the importance of experiments in numerical simulations
before applying the method to a real telescope and possible avenues for future work.
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1. INTRODUCTION

Astronomical observations from ground-based telescopes are deeply impacted by atmospheric turbulence, which
introduces phase distortions to the incoming light and, consequently, causes blurred and distorted images.
Adaptive Optics (AO) systems have emerged as a way to mitigate these effects, allowing telescopes to correct
wavefront aberrations and generate better observations. A standard AO system composes two main components:
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a wavefront sensor (WFS) that measures the phase aberrations caused by the atmosphere and a deformable
mirror (DM) that corrects for them. Most AO systems are controlled in a closed-loop configuration, where the
WFS measures the wavefront distortions after DM correction. Traditional control algorithms have been effective
but are often limited by their dependence on predetermined models of atmospheric turbulence and errors in the
control system models. More recently, the incorporation of Reinforcement Learning (RL) on AO systems has
shown promising results to overcome these shortcomings – RL is shown to predict the temporal evolution of
turbulence and adjust common modeling errors such as misregistration and optical gains [7, 6, 4, 10, 11]. Besides
Reinforcement learning, recent advances in AO techniques have brought up the use of artificial intelligence as
an aid to other wavefront sensing-related tasks [2], such as focal-plane wavefront sensing [1] and Point Spread
function (PSF) reconstruction [12].

Between the few RL techniques implemented for adaptive optics, Nousiainen et al.’s PO4ELT [6] consists of a
model-based policy optimization algorithm that estimates the voltages to be applied in the Deformable Mirror
(DM) from wavefront sensor (WFS) data. This algorithm has shown promising results in extensive numerical
simulations and in lab setups [6, 8], indicating suitability for on-sky tests. This paper takes the first steps towards
testing the method on-sky with the PAPYRUS bench [5] at the Observatoire Haute de Provence (OHP). We
implement and test the method on numerical simulation mimicking the PAPYRUS. This step allows us to have a
better understanding of the RL algorithm and how it communicates with the bench. It also leaves us room for
experimenting with different optimizations before deciding on a final version to go on-sky. Moreover, with the
increase of AI-based approaches for AO, the need for robust and compatible simulated platforms has escalated.
Object-Oriented Python Adaptive Optics (OOPAO) [3] is a Python-based tool created to perform end-to-end AO
simulations. In this paper, we also demonstrate how OOPAO’s availability as an open-source project and the fact
that it’s written in Python make it a suitable option to serve as an experimenting ground for RL approaches.

In the following sections, we provide a brief explanation of important RL concepts, such as Markov Decision
Processes used to design and implement the solution and how it is outlined for AO control. We proceed by
describing the PO4ELT algorithm and its training process alongside the neural network’s structure, illustrating
how it is integrated into the bench simulation. In the results section, we display the simulation parameters
used in the experiments with OOPAO followed by a comparison of the integrator’s performance under different
seeing and wind conditions, demonstrating PO4ELT’s capability to adapt to different optical gains along with the
predictive control.

2. REINFORCEMENT LEARNING FOR AO PREDICTIVE CONTROL

Reinforcement Learning (RL) is an area of machine learning focused on intelligent agents and how they take
actions to change the state of the environment they are in, with the objective of maximizing the cumulative
reward [13]. It differs from traditional supervised learning, where the labeled input and output pairs are given,
and the model can learn from its mistakes by comparing its predictions to the labeled ground-truth. In RL no
labeled data is given and the model optimizes itself by maximizing the rewards received for each action. The
reward function is defined according to the problem being solved.

RL is often used to solve problems that require real-time computation since the algorithms can be trained
“online”, as it solves the task. RL problems are usually described through Markov Decision Process (MDP)
formulation. An MDP is a mathematical framework that consists of a set of states, actions, transition probabilities,
and rewards. The state is the current state of the environment; the actions are the control signals given by the
agent, the transition probabilities are the probabilities of the system moving from one state to the other with
given actions; and the reward is a user-designed measure of performance.

At each time instance, an agent takes an action (from the set of all possible actions), leading to a new state
according to transition probabilities. The agent receives a reward for each action taken. The agent aims to
learn an optimal control strategy, e.g., a function (Policy) that maps an observation of the state to actions that
maximize the cumulative reward by interacting with the system.

Next, we describe how the AO framework is defined as an MDP following the approach of Nousiainen et al.
[7]. There are different ways to define an MDP for Adaptive Optics control (see, e.g.,[4, 10, 11]), but in this
paper, we constraint ourselves to explain the approach used in PO4AO’s.



We denote the control voltages applied to a DM at a given time instance t as vt and the WFS measurements,
pre-processed to slopes as wt. As such, an action effectuated at time step t is defined as the differential control
voltages applied to the DM in that instant t :

at = ∆vt, (1)

while the the full control voltages are ∆vt + vt−1. At each time step t, the WFS measurement wt is observed.
The measurements are projected into voltage space by operating the reconstruction matrix, denoted as C. Since
the system in our simulations is a closed loop, it corresponds to the residual voltages detected by the WFS. We
define an observation (of the state) at time instant t as

ot = Cwt. (2)

To ensure the Markovian property, each state St is represented by a concatenation of previous observations and
actions, that is,

St = (ot, ot−1, .., ot−k, at−1, at−2, ..., at−m), (3)

where k = m, including data from the previous m time steps and the reconstruction matrix C.

The reward function is defined as the residual voltages’ negative squared norm as stated below:

rt(st+1, st, at) = −1 ∗ ||ot+1||2. (4)

In the next section, we explain the PO4AO algorithm using the MDP notation.

3. PO4AO

Reinforcement Learning algorithms can be roughly divided into two sub-classes: model-based algorithms and
model-free [9]. In model-based reinforcement learning, the agent builds an explicit model of the environment,
called the dynamics model, which approximates the real transition dynamics of the environment (i.e., AO system,
bench). The dynamics model is then used for model predictive control or, like in this work, for optimizing a policy
model, a model that dictates the actions the agent will take (i.e., controlling the DM). In contrast, model-free
reinforcement learning doesn’t rely on an explicit model of the environment but learns directly from interaction
with it, acquiring a policy function without a dynamics model (see, e.g., [4, 10]).

The Policy Optimization for Adaptive Optics (PO4AO) algorithm is a model-based reinforcement learning
method, introduced and detailed in J. Nousiainen et al. [6], that utilizes two neural networks, the dynamic model
and the policy. The dynamics neural network model is trained on previously saved states and actions and learns
to infer the next state for the previous state and a given action, Dyn(st, at) = s′t+1, where s′t+1 is the predicted
next state. The policy (π) is a neural network that takes the current state st as input and outputs an action
at to be taken by the DM. Both the dynamics and the policy model are small convolutional neural networks
containing three layers each.

In order to train the models, the data from the simulation (a tuple containing: the next state, previous states,
and the actions taken) is collected and stored in a dataset, D = {(sit, ait)sit+1}Ni=1, where N is number of data
samples. The dynamics model, Dyn(st, at), is trained on the collected dataset as a standard supervised learning
task. Later, the policy model (π) is trained (i.e., the parameters are optimized) using the dynamics model. The
policy training loop starts by having the policy predicting the next action, from a state t collected from D,
π(st) = a′t, with a′t being the action given by the policy (π) in the instant t. Next, the predicted action (a′t) is fed
to the trained dynamics model, along with the corresponding state (st); the dynamics model then predicts the
next state (st+1), which is fed again to the policy, repeating this procedure for a fixed number of instances T
(called the planning horizon). At each time instance (inside the planning horizon), the rewards are collected and
finally back-propagated to policy parameters, optimizing the policy to maximize the rewards.

In our implementation of PO4AO, we define each episode as 500 frames of the simulation, and we run all
the experiments for a total of 20 episodes. We start the simulation by running the bench and applying random
voltages to the DM for one episode, collecting the state-action-next state tuples (st, at, st+1) for each frame in D.
This initial episode is called the warm-up step. After the warm-up the policy will then be used to estimate



the control voltages. This process of saving the tuples in D and updating the dynamics and the policy models
continues through all 20 episodes. Every subsequent training round starts after the end of every episode. In
our simulations, we trained the policy for 60 instances during the warm-up and for 7 in the subsequent training
rounds. These values were manually chosen during the experimentation phase.

4. EXPERIMENTS

In this section, we compare the simulation results obtained both with PO4AO and a classical integrator. We run
the experiments in 4 different turbulence settings, varying the loop gain in order to optimize the integrator. The
Strehl ratio was chosen as a comparative metric and was computed on each frame of every experiment. Finally,
we compare the best integrator result with PO4AO’s after each episode (500 frames). In the following subsection,
we specify the OOPAO simulation parameters used in the experiments. The results are shown and discussed
subsequently.

4.1 OOPAO Simulation Parameters

We used OOPAO to simulate the PAPYRUS bench and telescope T152 at OHP. The simulation parameters for
the system are provided in the table below. We simulated the atmospheric turbulence as a sum of five frozen
flow layers with Von Karman power spectra. The same system configuration was used for all the experiments,
with PO4AO and the integrator, and the only changing parameters between experiments were the atmospheric
parameters (seeing and wind speeds), which are provided in the label of each result separately. We note here that
numerical simulations were rather simple; for example, no central obstruction and spiders were present. A more
precise simulation is left for future work.

Table 1: PAPYRUS Simulation parameters for OOPAO
N°Actuators 17*17
Telescope Diameter 1.52m (OHP)
Sampling time 2ms (500 Hz)
Delay (PO4AO) 1 Frame
WFS Pyramid (Modulated)
WFS Modulation 3 λ/D
Modal Basis Zernike (50 modes)
DM Mechanical Coupling 35%
Wind Speed* 10 (m/s) / layer
Magnitude (NGS) 8
Sensing Wavelength “I” (806 nm)

4.2 Results

The initial experimental wind speed (WS) chosen was 10m/s for each of the 5 simulated atmospheric layers,
combining an r0 of 0.13m @500nm. In the second experiment, the wind speed was doubled, and the r0 was kept
the same. For the third experiment, the wind speed was kept at its original value, and the r0 was set to ≈ 0.086m
@500nm, 2/3 of the original value. Lastly, in the fourth experiment, the wind speed was doubled, and the value
of the r0 was 0.086m @500nm.

In Figures 1, we display the integrator performance for each turbulence setting with different gain values. For
each gain value, the Strehl ratio (SR) was averaged over 10.000 frames. A total of 10.000 frames (20 episodes) was
chosen as it was enough for the algorithm and the integrator to converge and stabilize the results. For atmospheric
conditions, the optimal integrator gain was either 0.9 or 0.95, both providing very similar performance (see Figure
1). The gain values bigger than 1 were unstable. We chose the gain value of 0.9 for the comparison to PO4AO
(Figure 2). Further, we note here that the gain value of 0.9 is above traditional stability criteria, and here, we
aimed to exploit the bench’s optical gain by going above 0.5 in an attempt to optimize the integrator for a fair



(a) WS = 10m/s, r0 = 0.13m @500nm (b) WS = 20m/s, r0 = 0.13m @500nm

(c) WS = 10m/s, r0 ≈ 0.086m @500nm (d) WS = 20m/s, r0 ≈ 0.086m @500nm

Figure 1: Integrator experiments: Average Strehl ratio for each gain in 10.000 frames

comparison against PO4AO. Overall, augmenting the gain had a significant impact going from the standard gain
value of 0.5 up to approximately 0.9.

Figure 2 shows the comparison with the integrator and PO4AO. We run both controllers for 10,000 frames, i.e.,
20 episodes. The integrator performance stays approximately constant (as expected). The PO4AO starts with
the warm-up phase (i.e., random commands), after which the policy NN starts to control the system. PO4AO
achieves better performance than the integrator already after the integrator warm-up and converges around 20
episodes. Figures indicate that PO4AO fared better than the optimal integrator, especially in the worst weather
conditions. In experiments (a) and (c), the integrator had a marginally close result to the RL approach. However,
in experiments (b) and (d), where the wind speed was doubled, the difference between PO4AO and the integrator
is substantially more remarkable. This illustrates RL’s predictive capability, indicating a significant potential for
an On-sky experiment on PAPYRUS (error budget dominated by temporal error).



(a) WS = 10m/s, r0 = 0.13m @500nm (b) WS = 20m/s, r0 = 0.13m @500nm

(c) WS = 10m/s, r0 ≈ 0.086m @500nm (d) WS = 20m/s, r0 ≈ 0.086m @500nm

Figure 2: Integrator (gain = 0.9) vs PO4AO: Strehl ratio for each 10.000 frames (20 episodes)

5. DISCUSSION

As shown in the previous section, PO4AO demonstrates encouraging results. The PO4AO outperformed the
optimized integrator in all test cases already after 500 frames of interaction. Moreover, simulating the PAPYRUS
bench allowed us to test the reinforcement learning approach with the flexibility provided by OOPAO. We were
able to experiment with different turbulence profiles and gain experience with the method, which is essential
before moving on to PAPYRUS.

The neural network’s capability to detect and exploit hidden features allied to the MDP formulation and
implementation of the RL technique seems to allow an improved correction. The PO4AO approach consistently
optimizes the residual WFS measurement (and consequently the SR) in different turbulence scenarios, with the
advantage of being able to adapt to changing conditions through online learning. In general, neural networks
indicate to be a promising solution for wavefront correction, emphasizing the potential of reinforcement learning
to enable telescopes to dynamically optimize their corrections for atmospheric turbulence.

In order to offer a more accurate simulation, further experiments will be focused on improving the PAPYRUS
simulation, such as the incorporation of a central obstruction and integration of telescope spiders. We also
look forward to optimizing the neural network’s parameters and overall trying to better the performance of the
algorithm by fine-tuning the many hyperparameters of the method. Another future improvement we intend to
make is to gradually change the turbulence conditions of the simulation during a single experiment instead of
trying each turbulence configuration separately in a unique simulation. For example, increasing the wind speed
and changing seeing conditions during the simulation. Misregistration and vibrations should also be added to
the PAPYRUS model in order to make the simulation more realistic. In our upcoming experiments, we plan to
enhance the PAPYRUS simulation model by upgrading it to a more recent and precise version. This upgrade will
bring us closer to achieving results that mirror those obtained from the actual bench. Additionally, we aim to
increase the magnitude of the calibration source while also calculating the error in the transfer function.



In our upcoming experiments, we plan to enhance the PAPYRUS simulation model by upgrading it to a more
recent and precise version. This upgrade will bring us closer to achieving results that mirror those obtained from
the actual bench.

Finally, we aim to continue this project by proceeding with the mentioned experiments on the simulated bench
and then deploying the algorithm on the PAPYRUS, under calibration source and, subsequently, on-sky. In order
to accomplish this goal, there are a few challenges related to PAPYRUS’s hardware that need to be addressed.
First, to successfully execute PO4AO on the bench, the system must be provided with an integrated GPU, giving
the system the ability to execute the neural network. Lastly, the software must be adapted and integrated into
the PAPYRUS’s RTC, which requires changes to the software’s current interface. We hope to manage these
challenges in the near future and further to explore the capabilities of reinforcement learning for adaptive optics.
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