

Liberté Égalité Fraternité

Phasing segmented telescopes via deep learning techniques

Maxime DUMONT, Jean-François SAUVAGE, Carlos CORREIA, Noah SCHWARTZ, Morgan GRAY, Jaime CARDOSO

Context

Earth observation from Low Earth Orbits (LEO)

• High angular resolution $\frac{\lambda}{D}$

Limited by the telescope aperture and wavelength

Increase the telescope size

• High revisit rate

Requires constellation of multiple satellites Limited by satellite cost i.e. **dimension**/manufacture

- Reduce the satellite volume
- Particularly interesting for LEO imaging at high resolution
 - Agriculture
 - Climate services
 - Disaster management
 - Defense

Needs **combine high angular resolution** and high **revisit rate**: fitting a **deployable telescope** inside a relatively small platform (CubeSat standard).

Context AZIMOV – The CubeSat deployable space telescope

3.0 m resolution (D=10 cm at 500 km)

1.0 m resolution (D=30 cm at 500 km)

	Ground Sampling Distance	1 m at 600 nm	
	Field of View	>2 km (goal 5 km).	
Requirement	Wavelengths	400-800 nm	
	Deployment residual wavefront error	<2 waves at 800 nm PV / 400nmRMS	
	Total residual wavefront error	70 nm RMS	
	Aperture diameter	≥ 300 mm	
	M1-M2 distance	≥ 280 mm	
	Payload volume	4U	

From Schwartz, Noah, et al. "6U CubeSat deployable telescope for optical Earth observation and astronomical optical imaging." Space Telescopes and Instrumentation 2022SPIE, 2022.

3

Error budget

Point source PSF	÷91	-
	Deployment error (400nm)	Imperfect phasir (150nm)
	1 Final -	

Extended	scene
Abberated	l image

WFE = 430nm	WFE = 130nm	WFE = 0nm]	Ground Sampl
				Field of View
	745			Wavelengths
				Deployment residual wavef
	T			Total residual
Deployment error (400nm)	Imperfect phasing (150nm)	Perfect phosing (15nm)		Aperture diam
AD Alman		1 Thinks		M1-M2 distant
TAL STRUCK	E E B. MARINE	E E Banen BA		Payload volum
		Imm		
		in the second		quivalent
		11 1000-248 115 1144 114 114 1144 114 114 1144 114 114 1144 1144 114 1144 1144 114 1144 1144 114		

Ground Sampling Distance	1 m at 600 nm
Field of View	>2 km (goal 5 km).
Wavelengths	800 nm
Deployment residual wavefront error	<2 waves at 800 nm PV / 400nmRMS
Total residual wavefront error	70 nm RMS
Aperture diameter	≥ 300 mm
M1-M2 distance	≥ 280 mm
Payload volume	4U

resolution of a 10cm telescope

Error budget

Step	Capture range	Precision specification
Telescope initial deployment	-	Within the detector
Coarse phasing	Detector field of view	Sub-wavelength
Fine phasing	Few Wavelength	15nm RMS

at 600 nm
m (goal 5 km).
nm
vaves at 800 nm PV / nmRMS
m RMS
0 mm
0 mm

Total WFE of 70nm RMS includes :

- Measurement error
- Latency
- Control errors
- Actuator resolution and drifts

Phasing under **15nm** in the visible is essential to reach diffraction limit resolution.

Constrains

Active control of the segment

V (100 mm) V (100

12 coefficients to estimate, PTT for each of the 4 segments

 $WFE = \sum_{\{k=0\}}^{\{4\}} \sqrt{\sum_{\{i=0\}}^{\{3\}}} d_{i}$

No additionnal optical path

Crop 5% of the total collecting area

Amplitude diversity¹

U.PORTO

FEUP

FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Methods – Focal Plane wavefront sensing

	Classical FP Methods		Deep Learning	
- Min •	Phase diversity ² imize a numerical criterion Iterative	Image Sharpening ³ Optimize an optical criterion • Iterative	Optimize a numerical criterion to adjust filters, weights and biaises. Data-Driven "Model-free" Stochastic learning Deterministic estimation 	
•	Model dependent Initial guess	 Model-free Initial guess Requires active correction at each iteration 	How it works ? > Dataset : > Coherent numbers of samples > Training : Optimize HP > Operation : NN models infere phase parameters	

Objectives

- Model sizes
- Noise propagation
- Robustness to Higher-Order aberrations
- Comparison to SoTA
- Uses NN as phasing strategy for AZIMOV
 - Full telescope phasing
 - Closed-loop
- How about Earth observation ?

Extended scene

point source

Baseline performance, impact of NN complexity

What about noise and high orders ?

II PORTO

FACULDADE DE ENGENHARIA

UNIVERSIDADE DO PORTO

• 2 scenarios :

RÉPUBLIQUE

FRANCAIŠE

Égalité Fraternité

- Model error (Noise / HO unknown)
- Noise / HO prior quantification (pre-calibrated)
- High orders are due to mirror polishing errors, thermal gradients, vibrations etc...

ONERA

THE FRENCH AEROSPACE LAB

Comparison to SoTA methods

- Phase diversity
 - Fit a PSF model \hat{h} to the current PSF
 - Numerical optimization Powell method
 - $\arg\min_{\{c_k^i\}} \left| PSF h(\widehat{\{c_k^i\}}) \right|^2 + \beta * \sum_{i,k} c_k^{i^2}$
- Image sharpening

RÉPUBLIQUE

FRANCAIŠE

Liberté Égalité Frateraité

- Optimize image centered intensity
- Active iterative correction of the mirror position
- $\arg \max_{\substack{x \in k \\ c_k^i}} \sum_{x=xc-2W}^{xc+2W} \sum_{y=xc-2W}^{yc+2W} I(x,y)$
- NN demonstrates a level at SoTA for performance, and better for computing time.
- At SNR = 100, NN methods shows a great performances both in computation time and performances.

AZIMOV Coarse and fine phasing

Coefficient to coefficient residuals

In a full phasing scenario, the 2 steps NN reaches diffraction limit requirement and remains stable at SNR = 100

Outlook : Extended scenes – Earth Observation

THE FRENCH AEROSPACE LAB

DE MARSEILL

Outlook : Extended scenes – Earth Observation Data generation

Outlook : Extended scenes – Earth Observation

Real data

5 Objects – 20k PSFs

Diffraction limit Generalize over other object Generalize over real data

Simple simulation

100k Objects –1 PSF

Diffraction limit Generalize over other object Generalize over real data

Simulation from spectrum

100k Objects –1 PSF

Diffraction limit Generalize over other object Generalize over real data

To go further

Realistic objet generation using VAE

Layer	Туре	Parameters
encl	Conv2d	(1, 32, (3, 3), (1, 1), (1, 1))
enc2	Conv2d	(32, 64, (3, 3), (2, 2), (1, 1))
enc3	Conv2d	(64, 64, (3, 3), (2, 2), (1, 1))
enc4	Conv2d	(64, 64, (3, 3), (1, 1), (1, 1))
linearenc	Linear	(16384, 16)
mu_layer	Linear	(16, 8)
log_var_layer	Linear	(16, 8)
lineardec	Linear	(8, 16384)
dec1	ConvTranspose2d	(64, 64, (3, 3), (1, 1), (1, 1))
dec2	ConvTranspose2d	(64, 64, (3, 3), (2, 2), (1, 1), (1, 1))
dec3	ConvTranspose2d	(64, 32, (3, 3), (2, 2), (1, 1), (1, 1))
dec4	ConvTranspose2d	(32, 1, (3, 3), (1, 1), (1, 1))

Liberté Égalité Frateraité

RÉPUBLIQUE FRANCAISE

Learning strategy

Results

Validation losses

Reconstructed images (from validation dataset)

Input image

Liberté Égalité Frateraité

Results

- si 🦾

Liberté Égalité Frateraité

RÉPUBLIQUE FRANCAISE ONERA

THE FRENCH AEROSPACE LAB

Train with low contrast

U.PORTO

FEUP

FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO ABORATOIRE D'ASTROPHYSIQUE

DE MARSEILLI

Train with mid contrast

Image formation limit

• First limit : Spectral content

 $Im = \mathcal{F}^{-1}(\mathcal{F}(obj) \times \mathcal{F}(PSF))$

• Second limit : Sensitivity loss from contrast

Sensitivity =
$$\sum_{\{i,j\}} \sigma_{i,j} (I_{ref} - I)$$

Conclusion & Outlook

Communications

NN reachs performance requirement for WFS on a point source.

Inference improved SoTA in terms of computing time.

Extended scene WF analysis requires high contrast images

Test on optical bench generated PSFs of AZIMOV (UK-ATC).

Work on extended scenes : • Fight the contrast : pre-processing ?

Presentations :

- WFSWorkshop 2022
- COSPAR 2023

Posters:

- SPIE 2022
- TAS 2023
- AO4ELT 2023

Publications :

- **Proceeding**; Dumont, Maxime, et al. "Deep learning for space-borne focalplane wavefront sensing." Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave. Vol. 12180. SPIE, 2022.
- Proceeding; Deep learning for low-order phasing of segmented telescopes, M. Dumont
- Article : "Phasing segmented telescopes via deep learning methods: application to a deployable CubeSat" JOSA-A Published

