
Towards an unbiased detection of 
Galactic filaments using innovative 

Deep Learning methods
BERTHELOT Loris

1



2

Outline

4321 5

9876 10

Introduction
Machine 
learning 
concepts

Dataset: 
Hi-GAL

Inference and 
learning on 
one single 
image

Normalization

Semi-supervised 
learning

PE-UNets: 
Adding physics 
information to improve 
performance

Improving 
PE-UNets with 
data 
augmentation

Cross-validation 
and model 
comparison

Applying our 
models to COHRS 
data 12CO (3-2) 
survey



Introduction

3



Context

● Filaments are made of gas and 
dust

● Filaments host stars formation 

● Need to detect filaments in an 
unbiased way to understand star 
formation  

Eagle nebula (M16) with Herschel (70 160 250 mm), Xu+2019 4



What are filaments?

Herschel-Hi-GAL image of the Chamaeleon Galactic Star forming region
Credit: ESA/Herschel/PACS, SPIRE/Hi-GAL Project. 5

● Structuration of the interstellar 
matter

● Over-density compared to the 
surrounding medium

● Mechanisms affecting filaments:
○ Gravity
○ Magnetic field
○ Turbulence
○ Supernova feedback



Filaments: A large diversity and a complex life cycle

Hacar+2023, Protostars and Planets VII, 153
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Filament properties:

● Shape

● Over-density level

● Orientation

● Length

● Width



Filament 
detection

H2 column density: Hi-GAL dataset, Molinari+ 2010 Hessian-based method, Schisano+2020

Objective: Detect filaments in an unbiased way
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Existing methods

● Derivative-based approaches (e.g. DisPerSe, CRISPy)

● Pattern matching approaches (e.g. RHT, Filfinder, FilDReaMS)

● Multi-scale approaches (e.g. getfilaments, getsf, wavelet-based methods)

User hyper-parameters dependency
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Hyperparameters issue

● Subjective results

● Incomplete extractions

● Over prediction algorithms

● Time consuming

Machine learning

9Filfinder, Green+ 2017



Machine learning concepts
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Train/Validation/Test setting

100%
Dataset

70%
Train

20%
Val

10%
Test

Random split
● Training control
● Choose best 

hyper-parameters

● Compute 
performances

● Train our neural 
network
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Hyper-parameter selection
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Hyper-parameter 
selection

Retrain and 
performance
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Hyper-parameter selection

70%
Train

Train

Hyper-parameters
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20%
Val

Inference

Compute metrics

Metrics

For each hyperparameter combinaison

Grid-search
Best hyper-
parameters

Hyper-parameter 
selection

Retrain and 
performance



Retraining and performances computation

90%
Train + Val

Train

Best hyper-
parameters
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Hyper-parameter 
selection

Retrain and 
performance



Retraining and performances computation

90%
Train + Val

Train

Best hyper-
parameters
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20%
Test

Inference

Compute metrics

Metrics

Hyper-parameter 
selection

Retrain and 
performance



Model comparison
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● One architecture     One performance measure

● No possible comparison between models

● We need several runs of the same experiment:
○ Statistics can be done on series of measures
○ This is called the cross-validation
○ We need to split our data into folds
○ This split is called the k-fold



K-fold split

Dataset
100%

K-fold split
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Fold 1
25%

Fold 2
25%

Fold 3
25%

Fold 4
25%



● For i from 1 to k

○ Fold i    test set

○ Fold i+1       validation set

○ Remaining folds      train set

K-fold attribution

21

Fold 1
25%

Fold 2
25%

Fold 3
25%

Fold 4
25%

Test
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○ Fold i    test set
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K-fold attribution
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Fold 1
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K-fold attribution
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Fold 1
25%

Fold 2
25%

Fold 3
25%

Fold 4
25%

Test Val

Train

● For i from 1 to k

○ Fold i    test set

○ Fold i+1       validation set

○ Remaining folds      train set



Cross-validation
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Fold 1
25%

Fold 2
25%

Fold 3
25%

Fold 4
25%

● Perform the usual training 
procedure with the corresponding 
sets

● We train k models for k 
performances

● Every sample is seen exactly once 
in test

Computation time multiplicated by 
k

Test Val

Train



Semantic segmentation task
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● Classification task
● Pixel level
● Two classes: Filament - Background

Semantic 
segmentation

H2 column density: Hi-GAL dataset, Molinari+ 2010 Schisano+2020



UNet models: Auto-encoder
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Encoder network

Compressed 
representation

Decoder network

Skip connections

Input Output

UNet, Berthelot+, in press
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UNet models: Auto-encoder
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Decoder networkEncoder network

Compressed 
representation

Skip connections

Input Output

UNet, Berthelot+, in press



UNet models: Auto-encoder
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Encoder network Decoder network

Compressed 
representation

Skip connections

Input Output

UNet, Berthelot+, in press



Dataset: Hi-GAL
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Hi-GAL: Description

● Herschel: far-IR space telescope (2009-2014)
● Survey of the Galactic plane in five photometric bands with the PACS 

and SPIRE instruments (Molinari+2010)
● Column density map N(H2) of the whole Gp derived (Elia+2013, 

Schisano+2020)

● Image of size: 1500 x 110000 pixels
● Pixel value: 4x1020 - 4x1023 H2 molecules cm-2

● 32069 filaments extracted in the Gp (Schisano+2020)    Labels
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Inference and learning on 
one single image

33



Hi-GAL: One single image

● We can not perform a direct k-fold split

Split our image into smaller ones (32x32 pixels patches)

34
Herschel Hi-GAL survey of the inner Galactic plane (Molinari+2010)



Patch-based learning

● One patch = one sample
○ It allows us to do k-fold split
○ Every patch appears exactly 

once in test

● We can reconstruct the Gp map from 
the k-fold

35

H2 column density: Hi-GAL dataset, Molinari+ 2010
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H2 column density: Hi-GAL dataset, Molinari+ 2010



Random k-fold strategy

Randomly assign each sample to a fold

● Imbalanced positions might imply 
imbalanced folds:
○ Position imbalance
○ Filament properties
○ Class balance

Pseudo random k-fold
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Fold 1
25%

Fold 2
25%

Fold 3
25%

Fold 4
25%



Pseudo random k-fold strategy

For a given longitude

● Assign the first patch to 
the ith fold (i random)

● Assign the second 
patch to the i+1th fold

● Assign the third patch 
to the i+2th fold

38Longitude

La
tit

ud
e

Gp

Pseudo random k-fold, 
Berthelot+, in press
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For each position, the number of patch should be the same in each fold

One colour     One fold

Position distribution with pseudo random 
k-folds

Position distribution, 
Berthelot+, in press



Normalization

40



Challenges of normalization

● Normalization is mandatory in ML
○ Data consistency
○ Mitigate outlier’s impact

N(H2) large range

Global normalisation will prevent low density 
filament detection

Local min-max normalisation (patch-based)
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4x1020 - 4x1023 H2 molecules cm-2



Local min-max map: revealing the structure

42

Local 
normalisation

H2 column density: Hi-GAL dataset, Molinari+ 2010 Local min-max normalization, Berthelot+ in press



Local min-max map: revealing the structure
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Local 
normalisation

H2 column density: Hi-GAL dataset, Molinari+ 2010 Local min-max normalization, Berthelot+ in press



Local min-max map: revealing the structure
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Local 
normalisation

H2 column density: Hi-GAL dataset, Molinari+ 2010 Local min-max normalization, Berthelot+ in press



Semi-supervised learning
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Using the usual supervised learning paradigm 

Reproduce the current results:

● Reduce the computation time

● Fusion of the processing steps

Extraction of only known filaments

We want to detect new filaments

46

H2 column density: Hi-GAL dataset, Uncomplete annotation
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H2 column density: Hi-GAL dataset, Uncomplete annotation



Using noisy inputs

● Artefacts

● Missing input

We want to avoid learning and metric computation on noisy pixels

48

H2 column density: Hi-GAL dataset, 
artefacts

H2 column density: Hi-GAL dataset, 
missing values
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Using noisy inputs

● Artefacts

● Missing input

We want to avoid learning and metric computation on noisy pixels
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H2 column density: Hi-GAL dataset, 
artefacts

H2 column density: Hi-GAL dataset, 
missing values



A simple semi-supervised learning strategy

● Filament candidate from 
Schisano+2020

● Background pixels are 
pixels with a lower column 
density than a handcrafted 
local threshold

● Rest is unknown

Training and metric 
computation is done only on 
known pixels 51

H2 column density: Hi-GAL dataset, Pixel labels, background pixels are in 
green and filament pixels are in red. Rest is unknown.
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A simple semi-supervised learning strategy

● Filament candidate from 
Schisano+2020

● Background pixels are 
pixels with a lower column 
density than a handcrafted 
local threshold

● Rest is unknown

Training and metric 
computation is done only on 
known pixels (red & green) 53

H2 column density: Hi-GAL dataset, Pixel labels, background pixels are in 
green and filament pixels are in red. Rest is unknown.



PE-UNets: Adding physics 
information to improve 

performance
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● Filament properties:
○ Shape
○ Contrast ratio
○ Orientation
○ Column density
○ Length
○ Width

● Number of filaments

Position might be an important
information for filament detection

Filament distribution along the Galactic plane, Schisano+2020

Filament-position relation
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Can we train a model to predict the position of a patch given as input?

56

Is the position information present in the column density?



Can we train a model to predict the position of a patch given as input?
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Compressed 

representation

Encoder part of a 
UNet

Is the position information present in the column density?



Can we train a model to predict the position of a patch given as input?
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PositionCompressed 
representation

Encoder part of a 
UNet

Classifier

Is the position information present in the column density?



Can we train a model to predict the position of a patch 
given as input?
Classifier:
● Linear(4096, 2048)
● Relu()
● Dropout(0.5)
● Linear(2048, 1024)
● Relu()
● Dropout(0.5)
● Linear(1024, 2)
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Can we train a model to predict the position of a patch 
given as input?
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Predicted position against true position, Berthelot+, in press



Can we train a model to predict the position of a patch 
given as input?
Classifier:
● Linear(4096, 2048)
● Relu()
● Dropout(0.5)
● Linear(2048, 1024)
● Relu()
● Dropout(0.5)
● Linear(1024, 2)

To some extent, it 
is possible to predict the 
position from the density
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Predicted position against true position, Berthelot+, in press
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Encoder network

Compressed 
representation

Decoder network

Skip connections

Is the position present in the compressed representation?



Can we train a classifier to predict the position of a patch given a 
compressed representation of a patch?
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Compressed 

representation

Is the position present in the compressed representation?

Encoder part of 
a UNet trained 

for segmentation



Can we train a classifier to predict the position of a patch given a 
compressed representation of a patch?
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Compressed 

representation

Is the position present in the compressed representation?

Encoder part of 
a UNet trained 

for segmentation



Can we train a classifier to predict the position of a patch given a 
compressed representation of a patch?

65
PositionCompressed 

representation
Classifier

Is the position present in the compressed representation?

Encoder part of 
a UNet trained 

for segmentation



Can we train a classifier to predict the position of a 
patch given a compressed representation of a patch?
Classifier:
● Linear(4096, 2048)
● Relu()
● Dropout(0.5)
● Linear(2048, 1024)
● Relu()
● Dropout(0.5)
● Linear(1024, 2)
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Predicted position against true position, Berthelot+, in press



Can we train a classifier to predict the position of a 
patch given a compressed representation of a patch?
Classifier:
● Linear(4096, 2048)
● Relu()
● Dropout(0.5)
● Linear(2048, 1024)
● Relu()
● Dropout(0.5)
● Linear(1024, 2)

UNet trained for seg-
mentation do not use the 
position information con-
tained in the patches 67

Predicted position against true position, Berthelot+, in press



How to improve UNet performances?

UNet models don’t use position information for segmentation

Position of filament in the Gp might be important (physical conditions)

Let’s give position as input to the UNet models

68



UNet

6969

Encoder network Decoder network

Skip connections

Compressed 
representationUNet, Berthelot+, in press
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PE-UNets
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Channel: 
PE-UNet-Input

Latent space: 
PE-UNet-Latent

Decision: 
PE-UNet-Decision

PE-UNets, Berthelot+, in press
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PE-UNet-Input
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Channel: 
PE-UNet-Input

Latent space: 
PE-UNet-Latent

Decision: 
PE-UNet-Decision

PE-UNets, Berthelot+, in press
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PE-UNet-Latent
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Channel: 
PE-UNet-Input

Latent space: 
PE-UNet-Latent

Decision: 
PE-UNet-Decision

PE-UNets, Berthelot+, in press
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PE-UNet-Decision
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Channel: 
PE-UNet-Input

Latent space: 
PE-UNet-Latent

Decision: 
PE-UNet-Decision

PE-UNets, Berthelot+, in press



How to add the position information?
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● Add the position information:
○ Fill one feature with latitude
○ Fill one feature with longitude
○ Concatenate them to the 

result of the previous layer

● Encode the position:
○ Data consistency
○ Handle outlier

Concatenation operation to add 
the position to the results of the 
previous layer, Berthelot+, in 
press

Position encoding of the Galactic longitude
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● Add the position information:
○ Fill one feature with latitude
○ Fill one feature with longitude
○ Concatenate them to the 

result of the previous layer

● Encode the position:
○ Data consistency
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Position encoding of the Galactic longitude



Putting some interpretability on PE-UNets

Channel: 
PE-UNet-Input

Latent space: 
PE-UNet-Latent

Decision: 
PE-UNet-Decision

● Input/Latent:
Aim to extract long range 
relation between segmentation 
and position.

● Decision:
The PE-UNet-D perform 
segmentation regardless of the 
position then take it into 
consideration, acting like an 
adaptive threshold.

76

PE-UNets, Berthelot+, in press
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PE-UNets, Berthelot+, in press



Improving PE-UNet 
performance with data 

augmentaiton

78



● Data augmentation improves model performance:
○ Flip
○ Rotation
○ Blur
○ Noise
○ Crop

Data augmentation should not change the label/reduce information

● Because of the filament-position relation, data augmentation could 
change the label

How to improve PE-UNet performance

79



How to improve PE-UNet performance

80

Data augmentation: flips and rotations

Data augmentation: flips and rotations

Region 1

Region 2

Region 1

Region 2



● Cross validation with 5 folds.

● Fixed learning rate, batch size, optimiser, etc.

● One cross-validation with no data augmentation strategy.

● One cross-validation with data augmentation (flips and rotations).

● Data augmentation virtually increases the dataset size by 16.

● Metrics used: DSC (IoU), mAP and AUC ROC

Improving PE-UNet with Data augmentation
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Can we improve PE-UNet performance 
with data augmentation?

82

PE-UNet-L performs better with DA

Maybe two effects play against each 
other:
○ DA improving performance
○ Physics non-reality decreasing 

performance
● We perform the same experiment with 

a UNet:
○ Performance gain is the same

DA is needed to increase performance

Average metric value across the 5 folds, Berthelot+, in 
press
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Cross validation and model 
comparison

86



● 5 folds
● Hyper-parameter: Learning rate
● Data augmentation: Flips and rotations (x16)
● Optimizer: Adam
● Models used:

○ UNet
○ UNet++
○ SwinUNet
○ PE-UNet(s) 

● Metrics used: DSC (IuO), mAP, AUC ROC

Experiment settings

87



PE-UNet-Latent gets
best average score 
for the 3 metrics

PE-UNet improves state of the art

88

Average metric value across the 5 folds, Berthelot+, in 
press



● We perform statistical test between models

● A p-value lower than 0.05 (values in bold)
indicates a confidence of 95% than the 
difference is significant

● The PE-UNet-L is significantly better than 
every other models except for the 
PE-UNet-I

PE-UNet’s improvements are significant

89

P-value of statistical test between models, 
Berthelot+, in press



● About 97% labeled pixels are 
correctly classified by our model 
(PE-UNet-L)

● For the unknown pixels, an 
empirical study has been done 
showing that our model performs 
well

How do metrics relate to maps?

90

Average DSC for PE-UNet-L, 
Berthelot+, in press

Background pixels are in green, filament labels in red and 
filament segmentation by our PE-UNet-L in blue

Berthelot+, in press
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Applying our model to 
COHRS data

12CO (3-2) survey
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● COHRS: 12CO (3-2) survey
● Hi-GAL and COHRS don’t trace the same physical conditions

Segmentation of COHRS (CO survey of the Gp)

94COHRS normed image on the left, Hi-GAL normed image on the right, Berthelot+ in press
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Segmentation of COHRS (CO survey of the Gp)
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12CO(3-2) COHRS 
normed image

12CO(3-2) COHRS 
Segmentation

Hi-GAL normed 
image

Hi-GAL 
segmentation



Segmentation of COHRS (CO survey of the Gp)
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12CO(3-2) COHRS 
normed image

12CO(3-2) COHRS 
Segmentation

Hi-GAL normed 
image

Hi-GAL 
segmentation



● Our model is able to detect filaments in COHRS
● No reference exists on COHRS for filament extraction
● COHRS presents very noisy images

Segmentation of COHRS (CO survey of the Gp)
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PE-UNet-L trained
on Hi-GAL

COHRS normed image COHRS segmentation



Conclusions
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Conclusions
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● Cross-validation scheme on Hi-GAL dataset
○ Patch learning strategy
○ Normalisation
○ Semi-supervised learning

● PE-UNet improves significatively the state of the art

● Application of our models to other datasets
○ COHRS



Perspectives
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From a machine learning standpoint, 
performance validation is the biggest 
challenge

Work towards ways to validate 
filament candidates
● Using 3D data from observations
● Using numerical simulations H2 column density: Hi-GAL dataset, Pixel labels, background 

pixels are in green and filament pixels are in red. Rest is 
unknown.



Thanks for your attention
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