

Towards an unbiased detection of Galactic filaments using innovative Deep Learning methods

BERTHELOT Loris

Introduction

Context

- Filaments are made of gas and dust
- Filaments host stars formation
- Need to detect filaments in an unbiased way to understand star formation

Eagle nebula (M16) with Herschel (70 160 250 mm), Xu+2019

What are filaments?

- Structuration of the interstellar matter
- Over-density compared to the surrounding medium
- Mechanisms affecting filaments:
 - Gravity
 - Magnetic field
 - Turbulence
 - Supernova feedback

Herschel-Hi-GAL image of the Chamaeleon Galactic Star forming region Credit: ESA/Herschel/PACS, SPIRE/Hi-GAL Project.

Filaments: A large diversity and a complex life cycle

Filament properties:

- Shape
- Over-density level
- Orientation
- Length
- Width

Hacar+2023, Protostars and Planets VII, 153

Objective: Detect filaments in an unbiased way

H₂ column density: Hi-GAL dataset, Molinari+ 2010

Filament detection

Hessian-based method, Schisano+2020

Existing methods

• Derivative-based approaches (e.g. DisPerSe, CRISPy)

• Pattern matching approaches (e.g. RHT, Filfinder, FilDReaMS)

• Multi-scale approaches (e.g. getfilaments, getsf, wavelet-based methods)

Hyperparameters issue

- Subjective results
- Incomplete extractions
- Over prediction algorithms
- Time consuming

(i) Original input image.

(iii) GT=80%, FT=80%, MSSIM=0.6586.

(iv) GT=70%, FT=70%,

(vi) GT=50%, FT=50%, MSSIM=0.6579.

Machine learning concepts

Hyper-parameter	Retrain and
selection	performance

Hyper-parameter	Retrain and
selection	performance

Hyper-parameters

Hyper-parameter	Retrain and
selection	performance

Retraining and performances computation

Hyper-parameter Retrain and selection performance

Retraining and performances computation

Model comparison

- One architecture \rightarrow One performance measure
- No possible comparison between models
- We need several runs of the same experiment:
 - Statistics can be done on series of measures
 - This is called the cross-validation
 - We need to split our data into *folds*
 - This split is called the k-fold

K-fold attribution

- For *i* from 1 to k
 - Fold $i \rightarrow$ test set
 - Fold $i+1 \rightarrow$ validation set
 - Remaining folds \rightarrow train set

K-fold attribution

- For *i* from 1 to k
 - Fold $i \rightarrow$ test set
 - Fold $i+1 \rightarrow$ validation set
 - Remaining folds \rightarrow train set

K-fold attribution

- For *i* from 1 to k
 - Fold $i \rightarrow$ test set
 - Fold $i+1 \rightarrow$ validation set
 - Remaining folds \rightarrow train set

Cross-validation

- Perform the usual training procedure with the corresponding sets
- We train *k* models for *k* performances
- Every sample is seen exactly once in test

Computation time multiplicated by *k*

Semantic segmentation task

- Classification task
- Pixel level
- Two classes: Filament Background

Semantic segmentation

Schisano+2020

H₂ column density: Hi-GAL dataset, Molinari+ 2010

Dataset: Hi-GAL

Hi-GAL: Description

- Herschel: far-IR space telescope (2009-2014)
- Survey of the Galactic plane in five photometric bands with the PACS and SPIRE instruments (Molinari+2010)
- Column density map N(H₂) of the whole Gp derived (Elia+2013, Schisano+2020)
- Image of size: 1500 x 110000 pixels
- Pixel value: $4x10^{20} 4x10^{23}$ H₂ molecules cm⁻²
- 32069 filaments extracted in the Gp (Schisano+2020) -> Labels

Inference and learning on one single image

Hi-GAL: One single image

• We can not perform a direct k-fold split

Split our image into smaller ones (32x32 pixels patches)

Herschel Hi-GAL survey of the inner Galactic plane (Molinari+2010)

Patch-based learning

- One patch = one sample
 - It allows us to do k-fold split
 - Every patch appears exactly once in test
- We can reconstruct the Gp map from the k-fold

H₂ column density: Hi-GAL dataset, Molinari+ 2010

Patch-based learning

- One patch = one sample
 - It allows us to do k-fold split
 - Every patch appears exactly once in test
- We can reconstruct the Gp map from the k-fold

H₂ column density: Hi-GAL dataset, Molinari+ 2010

Random k-fold strategy

Randomly assign each sample to a fold

- Imbalanced positions might imply imbalanced folds:
 - Position imbalance
 - Filament properties
 - Class balance

Pseudo random k-fold

Position distribution with pseudo random k-folds

For each position, the number of patch should be the same in each fold

Normalization

Challenges of normalization

- Normalization is mandatory in ML
 - Data consistency
 - Mitigate outlier's impact

Global normalisation will prevent low density filament detection

 $4x10^{20}$ - $4x10^{23}$ H₂ molecules cm⁻²

Local min-max map: revealing the structure

H₂ column density: Hi-GAL dataset, Molinari+ 2010

Local

Local min-max normalization, Berthelot+ in press

Local min-max map: revealing the structure

H₂ column density: Hi-GAL dataset, Molinari+ 2010

Local normalisation

Local min-max normalization, Berthelot+ in press

Local min-max map: revealing the structure

H₂ column density: Hi-GAL dataset, Molinari+ 2010

Local normalisation

Local min-max normalization, Berthelot+ in press

Semi-supervised learning

Using the usual supervised learning paradigm

Reproduce the current results:

- Reduce the computation time
- Fusion of the processing steps
- Extraction of only known filaments

We want to detect new filaments

H₂ column density: Hi-GAL dataset, Uncomplete annotation

Using the usual supervised learning paradigm

Reproduce the current results:

- Reduce the computation time
- Fusion of the processing steps
- Extraction of only known filaments

 $\rm H_{2}$ column density: Hi-GAL dataset, Uncomplete annotation

Using noisy inputs

• Artefacts

• Missing input

missing values

We want to avoid learning and metric computation on noisy pixels

Using noisy inputs

Artefacts

Missing input

H₂ column density: Hi-GAL dataset, missing values

We want to avoid learning and metric computation on noisy pixels

Using noisy inputs

Artefacts

Missing input

H₂ column density: Hi-GAL dataset, missing values

We want to avoid learning and metric computation on noisy pixels

A simple semi-supervised learning strategy

- Filament candidate from Schisano+2020
- Background pixels are pixels with a lower column density than a handcrafted local threshold
- Rest is unknown

Training and metric computation is done only on *known* pixels

H₂ column density: Hi-GAL dataset, Pixel labels, background pixels are in green and filament pixels are in red. Rest is unknown.

A simple semi-supervised learning strategy

- Filament candidate from Schisano+2020
- Background pixels are pixels with a lower column density than a handcrafted local threshold
- Rest is unknown

Training and metric computation is done only on *known* pixels

H₂ column density: Hi-GAL dataset, Pixel labels, background pixels are in green and filament pixels are in red. Rest is unknown.

A simple semi-supervised learning strategy

- Filament candidate from Schisano+2020
- Background pixels are pixels with a lower column density than a handcrafted local threshold
- Rest is unknown

Training and metric computation is done only on *known* pixels (red & green)

H₂ column density: Hi-GAL dataset, Pixel labels, background pixels are in green and filament pixels are in red. Rest is unknown.

PE-UNets: Adding physics information to improve performance

Filament-position relation

- Filament properties:
 - Shape
 - Contrast ratio
 - Orientation
 - Column density
 - Length
 - Width
- Number of filaments

Position might be an important information for filament detection

Is the position information present in the column density?

→ Can we train a model to predict the position of a patch given as input?

Is the position information present in the column density?

Is the position information present in the column density?

Can we train a model to predict the position of a patch given as input?

Classifier:

- Linear(4096, 2048)
- Relu()
- Dropout(0.5)
- Linear(2048, 1024)
- Relu()
- Dropout(0.5)
- Linear(1024, 2)

Can we train a model to predict the position of a patch given as input?

Classifier:

- Linear(4096, 2048)
- Relu()
- Dropout(0.5)
- Linear(2048, 1024)
- Relu()
- Dropout(0.5)
- Linear(1024, 2)

Predicted position against true position, Berthelot+, in press

Can we train a model to predict the position of a patch given as input?

Classifier:

- Linear(4096, 2048)
- Relu()
- Dropout(0.5)
- Linear(2048, 1024)
- Relu()
- Dropout(0.5)
- Linear(1024, 2)

To some extent, it is possible to predict the position from the density

Predicted position against true position, Berthelot+, in press

Can we train a classifier to predict the position of a patch given a compressed representation of a patch?

Can we train a classifier to predict the position of a patch given a compressed representation of a patch?

Can we train a classifier to predict the position of a patch given a compressed representation of a patch?

Can we train a classifier to predict the position of a patch given a compressed representation of a patch?

Classifier:

- Linear(4096, 2048)
- Relu()
- Dropout(0.5)
- Linear(2048, 1024)
- Relu()
- Dropout(0.5)
- Linear(1024, 2)

Predicted position against true position, Berthelot+, in press

Can we train a classifier to predict the position of a patch given a compressed representation of a patch?

Classifier:

- Linear(4096, 2048)
- Relu()
- Dropout(0.5)
- Linear(2048, 1024)
- Relu()
- Dropout(0.5)
- Linear(1024, 2)

UNet trained for segmentation do not use the position information contained in the patches

Predicted position against true position, Berthelot+, in press

How to improve UNet performances?

UNet models don't use position information for segmentation

Position of filament in the Gp might be important (physical conditions)

Let's give position as input to the UNet models

UNet

PE-UNets

PE-UNet-Input

PE-UNet-Latent

PE-UNet-Decision

How to add the position information?

- Add the position information:
 - Fill one feature with latitude
 - Fill one feature with longitude
 - Concatenate them to the result of the previous layer

- Encode the position:
 - Data consistency
 - Handle outlier

How to add the position information?

- Add the position information:
 - Fill one feature with latitude
 - Fill one feature with longitude
 - Concatenate them to the result of the previous layer

- Encode the position:
 - Data consistency
 - Handle outlier

Putting some interpretability on PE-UNets

• Input/Latent:

Aim to extract long range relation between segmentation and position.

• Decision: The PE-UNet-D perform segmentation regardless of the position then take it into consideration, acting like an adaptive threshold.

Putting some interpretability on PE-UNets

• Input/Latent:

Aim to extract long range relation between segmentation and position.

• Decision:

The PE-UNet-D perform segmentation regardless of the position then take it into consideration, acting like an *adaptive threshold*.

Improving PE-UNet performance with data augmentaiton

How to improve PE-UNet performance

- Data augmentation improves model performance:
 - Flip
 - Rotation
 - Blur
 - Noise
 - Crop

Data augmentation should not change the label/reduce information

• Because of the filament-position relation, data augmentation could change the label

How to improve PE-UNet performance

Region 1

Data augmentation: flips and rotations

Region 1

Region 2

Region 2

Improving PE-UNet with Data augmentation

- Cross validation with 5 folds.
- Fixed learning rate, batch size, optimiser, etc.
- One cross-validation with no data augmentation strategy.
- One cross-validation with data augmentation (flips and rotations).
- Data augmentation virtually increases the dataset size by 16.
- Metrics used: DSC (IoU), mAP and AUC ROC

• PE-UNet-L performs better with DA

Maybe two effects play against each other:

- DA improving performance
- Physics non-reality decreasing performance
- We perform the same experiment with a UNet:
 - Performance gain is the same

Model	DA	DSC	mAP	AUC ROC
UNet	no	0.9270	0.9551	0.9782
PE-UNet-L	no	0.9338	0.9627	0.9819
UNet	yes	0.9680	0.9949	0.9960
PE-UNet-L	yes	0.9746	0.9970	0.9976

PE-UNet-L performs better with DA

- Δ
- Maybe two effects play against each other:
 - DA improving performance
 - Physics non-reality decreasing performance
- We perform the same experiment with a UNet:
 - Performance gain is the same

Model	DA	DSC	mAP	AUC ROC
UNet	no	0.9270	0.9551	0.9782
PE-UNet-L	no	0.9338	0.9627	0.9819
UNet	yes	0.9680	0.9949	0.9960
PE-UNet-L	yes	0.9746	0.9970	0.9976

PE-UNet-L performs better with DA

- Λ
- Maybe two effects play against each other:
 - DA improving performance
 - Physics non-reality decreasing performance
- We perform the same experiment with a UNet:
 - Performance gain is the same

Model	DA	DSC	mAP	AUC ROC
UNet	no	0.9270	0.9551	0.9782
PE-UNet-L	no	0.9338	0.9627	0.9819
UNet	yes	0.9680	0.9949	0.9960
PE-UNet-L	yes	0.9746	0.9970	0.9976

PE-UNet-L performs better with DA

- Λ
- Maybe two effects play against each other:
 - DA improving performance
 - Physics non-reality decreasing performance
- We perform the same experiment with a UNet:
 - Performance gain is the same
- **DA** is **needed** to increase performance

Model	DA	DSC	mAP	AUC ROC
UNet	no	0.9270	0.9551	0.9782
PE-UNet-L	no	0.9338	0.9627	0.9819
UNet	yes	0.9680	0.9949	0.9960
PE-UNet-L	yes	0.9746	0.9970	0.9976

Cross validation and model comparison

Experiment settings

- 5 folds
- Hyper-parameter: Learning rate
- Data augmentation: Flips and rotations (x16)
- Optimizer: Adam
- Models used:
 - UNet
 - UNet++
 - \circ SwinUNet
 - PE-UNet(s)
- Metrics used: DSC (luO), mAP, AUC ROC

PE-UNet improves state of the art

PE-UNet-Latent gets best average score for the 3 metrics

Model	DSC	mAP	AUC ROC
UNet	0.9680	0.9949	0.9960
UNet++	0.9690	0.9953	0.9960
SwinUNet	0.9637	0.9939	0.9950
PE-UNet-I	0.9649	0.9950	0.9960
PE-UNet-D	0.9685	0.9952	0.9962
PE-UNet-L	0.9746	0.9970	0.9976

Average metric value across the 5 folds, Berthelot+, in

press

PE-UNet's improvements are significant

- We perform statistical test between models
- A p-value lower than 0.05 (values in bold) indicates a confidence of 95% than the difference is significant
- The PE-UNet-L is significantly better than every other models except for the PE-UNet-I

Method	PE-UNet-L
UNet	0.0175
UNet++	0.0061
SwinUNet	0.0031
PE-UNet-D	0.0006
PE-UNet-I	0.1676

P-value of statistical test between models, Berthelot+, in press

How do metrics relate to maps?

Model	DSC
PE-UNet-L	0.9746

Average DSC for PE-UNet-L, Berthelot+, in press

- About 97% labeled pixels are correctly classified by our model (PE-UNet-L)
- For the unknown pixels, an empirical study has been done showing that our model performs well

Background pixels are in green, filament labels in red and filament segmentation by our PE-UNet-L in blue Berthelot+, in press

How do metrics relate to maps?

Average DSC for PE-UNet-L, Berthelot+, in press

- About 97% labeled pixels are correctly classified by our model (PE-UNet-L)
- For the unknown pixels, an empirical study has been done showing that our model performs well

Background pixels are in green, filament labels in red and filament segmentation by our PE-UNet-L in blue Berthelot+, in press

How do metrics relate to maps?

Average DSC for PE-UNet-L, Berthelot+, in press

- About 97% labeled pixels are correctly classified by our model (PE-UNet-L)
- For the unknown pixels, an empirical study has been done showing that our model performs well

Background pixels are in green, filament labels in red and filament segmentation by our PE-UNet-L in blue Berthelot+, in press

Applying our model to COHRS data ¹²CO (3-2) survey

- COHRS: ¹²CO (3-2) survey
- Hi-GAL and COHRS don't trace the same physical conditions

COHRS normed image on the left, Hi-GAL normed image on the right, Berthelot+ in press

- COHRS: ¹²CO (3-2) survey
- Hi-GAL and COHRS don't trace the same physical conditions

COHRS normed image on the left, Hi-GAL normed image on the right, Berthelot+ in press

- COHRS: ¹²CO (3-2) survey
- Hi-GAL and COHRS don't trace the same physical conditions

COHRS normed image on the left, Hi-GAL normed image on the right, Berthelot+ in press

¹²CO(3-2) COHRS normed image

¹²CO(3-2) COHRS Segmentation

¹²CO(3-2) COHRS normed image

¹²CO(3-2) COHRS Segmentation

- Our model is able to detect filaments in COHRS
- No reference exists on COHRS for filament extraction
- COHRS presents very noisy images

Conclusions

Conclusions

- Cross-validation scheme on Hi-GAL dataset
 - Patch learning strategy
 - Normalisation
 - Semi-supervised learning
- PE-UNet improves significatively the state of the art
- Application of our models to other datasets
 - COHRS

Perspectives

From a machine learning standpoint, performance validation is the biggest challenge

→ w

Work towards ways to validate filament candidates

- Using 3D data from observations
- Using numerical simulations

H₂ column density: Hi-GAL dataset, Pixel labels, background pixels are in green and filament pixels are in red. Rest is unknown.

Thanks for your attention